Endo180 binds to the C-terminal region of type I collagen.

J Biol Chem

Vanderbilt-Ingram Cancer Center, Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

Published: June 2005

Type I collagen is a fibril-forming heterotrimer composed of two alpha1 and one alpha2 chains and plays a crucial role in cell-matrix adhesion and cell differentiation. Through a comprehensive differential display screening of oncogenic ras target genes, we have shown that the alpha1 chain of type I collagen (col1a1) is markedly down-regulated by the ras oncogene through the mitogen-activated protein kinase pathway. Although ras-transformed cells are no longer able to produce and secrete endogenous collagen, they can still adhere to exogenous collagen, suggesting that the cells express a collagen binding factor(s) on the cell surface. When the region of col1a1 encompassing the C-terminal glycine repeat and C-prodomain (amino acids 1000-1453) was affinity-labeled with human placental alkaline phosphatase, the secreted trimeric fusion protein could bind to the surface of Ras-transformed cells. Using biochemical purification followed by matrix-assisted laser desorption/ionization mass spectrometry analysis, we identified this collagen binding factor as Endo180 (uPARAP, CD280), a member of the mannose receptor family. Ectopic expression of Endo180 in CosE5 cells followed by in situ staining and quantitative binding assays confirmed that Endo180 indeed recognizes and binds to placental alkaline phosphatase. The interaction between Endo180 and the C-terminal region of type I collagen appears to play an important role in cell-matrix adhesion.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M501155200DOI Listing

Publication Analysis

Top Keywords

type collagen
16
c-terminal region
8
region type
8
collagen
8
role cell-matrix
8
cell-matrix adhesion
8
ras-transformed cells
8
collagen binding
8
placental alkaline
8
alkaline phosphatase
8

Similar Publications

: To explore the relationship between the stability of poly(gamma-glutamic acid) (γ-PGA) dispersion systems with γ-PGA of different molecular weights (MWs) and concentrations and type I collagen mineralization. : γ-PGA was used as a noncollagenous protein (NCP) analogue to regulate the stability of supersaturated γ-PGA-stabilized amorphous calcium phosphate (PGA-ACP) solutions by changing the γ-PGA MW (2, 10, 100, 200 and 500 kDa) and concentration (400, 500 and 600 μg mL). Then, the optical density (OD) at 72 h was measured to determine the PGA-ACP solution stability.

View Article and Find Full Text PDF

Cancer metastasis involves cell migration from their primary organ foci into vascular channels, followed by dissemination to prospective colonization sites. Vascular entry of tumor cells or intravasation involves their breaching stromal and endothelial extracellular matrix (ECM) and the endothelial barriers. How the kinetics of this breach are confounded by chronic inflammatory stresses seen in diabetes and aging remains ill-investigated.

View Article and Find Full Text PDF

Insulin-like growth factor 2 (IGF2) is a mitogenic peptide hormone expressed by various tissues. Although it is three times more abundant in serum than IGF1, its physiological and pathological roles are yet to be fully understood. Previous transcriptome sequencing studies have shown that IGF2 expression is increased in hypertrophic scar (HS); however, its role in HS formation and the underlying mechanism remains elusive.

View Article and Find Full Text PDF

Heart failure with preserved ejection fraction (HFpEF) accounts for approximately 50% of heart failure cases globally, and this incidence is increasing due to extended lifespans and accumulating comorbidities. Emerging evidence suggests that Wnt signaling plays a role in cardiomyocyte hypertrophy and cardiac fibrosis, which are key features of HFpEF. Furthermore, Porcupine (PORCN) inhibitors, which negatively regulate Wnt signaling, have shown promising results in improving cardiac function and reducing cardiac hypertrophy and/or fibrosis.

View Article and Find Full Text PDF

Oxygenous and biofilm-targeted nanosonosensitizer anchored with Pt nanozyme and antimicrobial peptide in the gelatin/sodium alginate hydrogel for infected diabetic wound healing.

Int J Biol Macromol

December 2024

Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China. Electronic address:

Sonodynamic therapy is an emerging therapeutic approach for combating bacterial infections. However, the characteristics of hypoxia, high HO microenvironment, and the formation of persistent biofilms in diabetic wound sites limit its efficacy in this field. To address these issues, we developed a multifunctional antibacterial hydrogel dressing PPCN@Pt-AMPs/HGel with the cross-linked gelatin and sodium alginate as the matrix, where the nanosonosensitizer PCN-224 was decorated with the oxygen-generating Pt nanoenzyme and further coupled with a biofilm-targeting antimicrobial peptide via an interacting polydopamine layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!