Limb design is well conserved among quadrupeds, notably, the knees point forward (i.e. cranial inclination of femora) and the elbows point back (i.e. caudal inclination of humeri). This study was undertaken to examine the effects of joint orientation on individual leg forces and centre of mass dynamics. Steady-speed trotting was simulated in two quadrupedal models. Model I had the knee and elbow orientation of a quadruped and model II had a reversed leg configuration in which knees point back and elbows point forward. The model's legs showed directional compliance determined by the orientation of the knee/elbow. In both models, forward pointing knees/elbows produced a propulsive force bias, while rearward pointing knees/elbows produced a braking force bias. Hence, model I showed the same pattern of hind-leg propulsion and fore-leg braking observed in trotting animals. Simulations revealed minimal pitch oscillations during steady-speed trotting of model I, but substantially greater and more irregular pitch oscillations of model II. The reduced pitch oscillation of model I was a result of fore-leg and hind-leg forces that reduced pitching moments during early and late stance, respectively. This passive mechanism for reducing pitch oscillations was an emergent property of directionally compliant legs with the fore-hind configuration of model I. Such intrinsic stability resulting from mechanical design can simplify control tasks and lead to more robust running machines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1564074 | PMC |
http://dx.doi.org/10.1098/rspb.2004.3014 | DOI Listing |
Chaos
January 2025
State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
The aircraft can experience complex environments during the flight. For the random actions, the traditional Gaussian white noise assumption may not be sufficient to depict the realistic stochastic loads on the wing structures. Considering fluctuations with extreme conditions, Lévy noise is a better candidate describing the stochastic dynamical behaviors on the airfoil models.
View Article and Find Full Text PDFSci Rep
January 2025
College of Artificial Intelligence and Automation, Hohai University, Nanjing, China.
Independent pitch control (IPC) is a crucial technology for enhancing the performance of wind turbines, optimizing the power output, and reducing the loads by managing each blade. This paper explores the primary vibration modes of semi-submersible wind turbines under wind-wave coupling. Given the effectiveness of pitch control in vibration suppression, this paper addresses the limitations of conventional collective pitch control (CPC) by designing an independent pitch control method based on an equivalent wind speed model (EWIPC).
View Article and Find Full Text PDFJ Exp Biol
December 2024
Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
Many wingless arboreal arthropods can glide back to tree trunks following free falls. However, little is known about the behaviors and aerodynamics underlying such aerial performance, and how this may be influenced by body size. Here, we studied gliding performance by nymphs of the stick insect Extatosoma tiaratum, focusing on the dynamics of J-shaped trajectories and how gliding capability changes during ontogeny.
View Article and Find Full Text PDFJ Voice
December 2024
Freiburg Institute for Musicians' Medicine, Medical Center, University of Freiburg, Elsässer Str 2m, 79106, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Objectives: In voice production, interactions occur between the oscillating vocal folds, the respiratory system, and the vocal tract. However, it is not yet sufficiently understood how the respiratory system could affect the vocal tract configuration. It is hypothesized that a reduction in tracheal pull, caused by decreasing lung volume, along with shifts in dominant exhalation forces (from inspiratory to expiratory muscles), leads to a larynx elevation with shortening of the vocal tract tube, and consecutively, articulatory adjustments to preserve consistent sound quality.
View Article and Find Full Text PDFConscious Cogn
November 2024
Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain; Department of Experimental Psychology, University of Granada, Granada, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!