Within a broader programme developing murine models of Huntington's disease (HD), we have sought to develop a test of implicit learning for the mouse. Mice were trained in a novel serial visual discrimination task in the '9-hole box' operant test apparatus, followed by retesting after either bilateral quinolinic acid striatal lesions or sham lesions. In the task, each trial involves two sequential responses: an initial light stimulus is presented randomly in one of five holes, to which a nose-poke response results in the first light being extinguished and a second light is illuminated in a different hole. Response to the second light results in food reward, followed by a brief interval before the next trial. When the first light was in one of three of the five holes, the location of the second light was unpredictable in any of the remaining four holes; by contrast, if the first light occurred in one of the other two of the five holes, then the location of the second light was entirely predictable, being the hole two steps to the left or to the right, respectively. Reaction times and accuracy of responding were recorded to both stimuli. The mice learned the task with a degree of accuracy, and they demonstrated clear implicit learning, as measured by increased accuracy and reduced latency to respond to the presentation of the predictable stimulus. Striatal lesions disrupted performance, reducing accuracy for both the first and second stimuli and increasing response latencies for the second stimuli. The decrease in accuracy by the lesioned animals was accompanied by increases in perseverative nose-poking and inappropriate magazine entries throughout the trials, but the lesioned mice still showed a similar benefit (albeit, against a lower baseline of performance) from the implicit knowledge provided on predictable trials. The data validates the task as a sensitive probe for determining implicit learning deficits in the mouse, and suggests that the consequences of striatal lesions, while disrupting performance of skilled stimulus-response habits, are not selective to the process underlying implicit learning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2004.11.021DOI Listing

Publication Analysis

Top Keywords

implicit learning
20
second light
16
striatal lesions
12
visual discrimination
8
discrimination task
8
lesioned mice
8
light
8
holes location
8
location second
8
second stimuli
8

Similar Publications

Contextual cues can be used to predict the likelihood of and reduce interference from salient distractors.

Atten Percept Psychophys

January 2025

Department of Psychology, The Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.

Our attention can sometimes be disrupted by salient but irrelevant objects in the environment. This distractor interference can be reduced when distractors appear frequently, allowing us to anticipate their presence. However, it remains unknown whether distractor frequency can be learned implicitly across distinct contexts.

View Article and Find Full Text PDF

In motor adaptation, learning is thought to rely on a combination of several processes. Two of these are implicit learning (incidental updating of the movement due to sensory prediction error) and explicit learning (intentional adjustment to reduce target error). The explicit component is thought to be fast adapting, while the implicit one is slow.

View Article and Find Full Text PDF

Children with cerebral palsy (CP) often participate in training to improve mobility, hand function and other motor abilities. However, responses to these interventions vary considerably across individuals even those with similar brain injuries, ages and functional levels. Dopamine is a neurotrasmitter known to affect motor skill acquistion in animals and humans and may be influenced by individual variations in genes related to brain transmission of dopamine.

View Article and Find Full Text PDF

Transient changes in the firing of midbrain dopamine neurons have been closely tied to the unidimensional value-based prediction error contained in temporal difference reinforcement learning models. However, whereas an abundance of work has now shown how well dopamine responses conform to the predictions of this hypothesis, far fewer studies have challenged its implicit assumption that dopamine is not involved in learning value-neutral features of reward. Here, we review studies in rats and humans that put this assumption to the test, and which suggest that dopamine transients provide a much richer signal that incorporates information that goes beyond integrated value.

View Article and Find Full Text PDF

NeCA: 3D Coronary Artery Tree Reconstruction from Two 2D Projections via Neural Implicit Representation.

Bioengineering (Basel)

December 2024

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK.

Cardiovascular diseases (CVDs) are the most common health threats worldwide. 2D X-ray invasive coronary angiography (ICA) remains the most widely adopted imaging modality for CVD assessment during real-time cardiac interventions. However, it is often difficult for the cardiologists to interpret the 3D geometry of coronary vessels based on 2D planes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!