Semimicroscopic modeling of permeation energetics in ion channels.

IEEE Trans Nanobioscience

Department of Chemistry, Brandeis University, Waltham, MA 02454-9110, USA.

Published: March 2005

The semimicroscopic (SMC) approach to modeling the energetics of ion permeation through biological channels provides an alternative perspective to standard molecular dynamics methods. It exploits the timescale separation between electronic and structural contributions to dielectric stabilization and accounts for electronic polarization by embedding the channel in a milieu that, on average, describes this polarization. Ions, water, and selected peptide moieties are mobile and comprise the reorganizational contribution to dielectric stabilization. The conceptual advantages and limitations of the technique are described. Methodological details are outlined, stressing three convenient electrical geometries. Practical aspects of the SMC procedure are explained, highlighting the areas ripe for further development. Finally, some specific applications are considered.

Download full-text PDF

Source
http://dx.doi.org/10.1109/tnb.2004.842502DOI Listing

Publication Analysis

Top Keywords

energetics ion
8
dielectric stabilization
8
semimicroscopic modeling
4
modeling permeation
4
permeation energetics
4
ion channels
4
channels semimicroscopic
4
semimicroscopic smc
4
smc approach
4
approach modeling
4

Similar Publications

Here we report a simple self-masking technique for fabricating bioinspired broadband antireflection coatings on both single-crystalline and multicrystalline silicon wafers with the assistance of a polyimide tape. Subwavelength-structured moth-eye nanopillars, which exhibit superior antireflection performance over a broad range of visible and near-IR wavelengths, can be patterned uniformly on the wafer surface by applying a chlorine-based reactive ion etching (RIE) process. The resulting random nanopillars show improved antireflection properties compared with ordered nanopillars templated by colloidal lithography under the same RIE conditions.

View Article and Find Full Text PDF

Atomically precise clusters such as [Pt(CO)(PPh)] ( = 1,2) (PPh is triphenylphosphine) are known as precursors for making oxidation catalysts. However, the changes occurring to the cluster upon thermal activation during the formation of the active catalyst are poorly understood. We have used a combination of hybrid mass spectrometry and surface science to map the thermal decomposition of [Pt(CO)(PPh)](NO).

View Article and Find Full Text PDF

Rate coefficients for ion-polar-molecule reactions between acetonitrile molecules (CHCN) and nitrogen molecular ions (N), which are of importance to the upper atmospheric chemistry of Saturn's moon Titan, were measured for the first time at low translational temperatures. In the experiments, the reaction between sympathetically cooled N ions embedded in laser-cooled Ca Coulomb crystals and velocity-selected acetonitrile molecules generated using a wavy Stark velocity filter was studied to determine the reaction rate coefficients. Capture rate coefficients calculated by the Su-Chesnavich approach and by the perturbed rotational state theory considering the rotational state distribution of CHCN were compared to the experimental rate coefficients.

View Article and Find Full Text PDF

Functionalization of Polymer Surfaces for Organic Photoresist Materials.

ACS Appl Mater Interfaces

January 2025

Tokyo Electron America, Inc., 2400 Grove Blvd., Austin, Texas 78741, United States.

Photoresists are thin film materials designed to transform an optimal image into a mechanical mask. Diverse exposure techniques such as photolithography induce modifications in the exposed areas that result in solubility changes that can then be selectively removed with appropriate agents (developers). Photoresist materials need to keep pace with the increasingly demand for feature size reduction.

View Article and Find Full Text PDF

The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the generated reactive oxygen species (ROS, e.g. ·OH and O ) authoritatively enhances its biological and catalytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!