The development of capillary electrophoresis (CE)-based competitive immunoassay for prion protein (PrP) using carboxymethyl beta-cyclodextrin (CM-beta-CD) as a buffer additive is described here. The assay was based on the competitive binding of PrP and a fluorescein-labeled peptide from the prion protein with a limiting amount of specific antibody. The amount of both free and fluorescein-labeled peptide bound to antibody (immunocomplex) were determined by CE with laser-induced fluorescence detection. In the presence of PrP, the peak height ratio of the immunocomplex and the free peptide was altered compared to the control. These changes were directly proportional to the amount of PrP present. The fluorescently labeled peptide spanning amino acid positions 140-158 of the PrP and its corresponding monoclonal antibody is reported here. The reaction times of the antibody with either the peptide or the recombinant PrP was less than 1 min and is a large improvement over the 16-18 h required to achieve equilibrium for polyclonal antibodies. CM-beta-CD was explored as a buffer additive to suppress analyte adsorption and enhance separation selectivity in the CE analysis. A fast (1.1 min), selective (resolution 4.7), and reproducible (relative standard deviations of migration time for free and bound fluorescein isothiocyanate (FITC)-peptide 0.56% and 0.64%, respectively) separation was obtained with 0.6% CM-beta-CD in 25 mM N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid (TAPS) at pH 8.8. The concentration detection limit of the assay for recombinant PrP was determined to be 80 ng/mL (or mass detection limit 1 pg). When blood samples from scrapie-infected sheep and from normal sheep were tested, the results of the blood assay were consistent with scrapie status of the sheep as determined post mortem by Western blot analysis. Development of this assay will lead to a potentially robust, rapid, and specific preclinical diagnosis for transmissible spongiform encephalopathies (TSEs) in animals and humans.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200410202DOI Listing

Publication Analysis

Top Keywords

prion protein
12
competitive immunoassay
8
laser-induced fluorescence
8
fluorescence detection
8
buffer additive
8
fluorescein-labeled peptide
8
recombinant prp
8
detection limit
8
prp
7
detection
5

Similar Publications

The question of strains in AA amyloidosis.

Sci Rep

January 2025

Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, C11, 75185, Uppsala, Sweden.

The existence of transmissible amyloid fibril strains has long intrigued the scientific community. The strain theory originates from prion disorders, but here, we provide evidence of strains in systemic amyloidosis. Human AA amyloidosis manifests as two distinct clinical phenotypes called common AA and vascular AA.

View Article and Find Full Text PDF

Hsp70, Hsp90, and ClpB/Hsp100 are molecular chaperones that help regulate proteostasis. Bacterial and yeast Hsp70s and their cochaperones function synergistically with Hsp90s to reactivate inactive and aggregated proteins by a mechanism that requires a direct interaction between Hsp90 and Hsp70 both in vitro and in vivo. and yeast Hsp70s also collaborate in bichaperone systems with ClpB and Hsp104, respectively, to disaggregate and reactivate aggregated proteins and amyloids such as prions.

View Article and Find Full Text PDF

Decades after their initial observation in prion-infected brain tissues, the identities of virus-like dense particles, varicose tubules, and oval bodies containing parallel bands and fibrils have remained elusive. Our recent work revealed that a phenotype of dilation of the endoplasmic reticulum (ER), most notable for the perinuclear space (PNS), contributes to spongiform degeneration. To assess the significance of this phenotype for the etiology of prion diseases, we explored whether it can be functionally linked to other neuropathological hallmarks observed in these diseases, as this would indicate it to be a central event.

View Article and Find Full Text PDF

The aggregation of α-synuclein is crucial to the development of Lewy body diseases, including Parkinson's disease and dementia with Lewy bodies. The aggregation pathway of α-synuclein typically involves a defined sequence of nucleation, elongation, and secondary nucleation, exhibiting prion-like spreading. This study employed Raman spectroscopy and machine learning analysis, alongside complementary techniques, to characterize the biomolecular changes during the fibrillation of purified recombinant wild-type α-synuclein protein.

View Article and Find Full Text PDF

Mutations in hnRNP A1 drive neurodegeneration and alternative RNA splicing of neuronal gene targets.

Neurobiol Dis

January 2025

Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada. Electronic address:

RNA binding protein dysfunction is a pathogenic feature of multiple neurological diseases, including multiple sclerosis (MS). Neurodegeneration (the loss of, or damage to neurons and axons) is the primary driver of disease progression in MS. Herein, we utilized a novel, neuron-specific model of neurodegeneration by transducing primary mouse neurons with mutant forms of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) identified from MS patients, including one within the M9-nuclear localization sequence of hnRNP A1 (A1(P275S)) and a second in the prion-like domain of hnRNP A1 (A1(F263S)) to test the hypothesis that neuronal hnRNP A1 dysfunction drives neurodegeneration in MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!