Although the analysis of censored survival data using the proportional hazards and linear regression models is common, there has been little work examining the ability of these estimators to predict time to failure. This is unfortunate, since a predictive plot illustrating the relationship between time to failure and a continuous covariate can be far more informative regarding the risk associated with the covariate than a Kaplan-Meier plot obtained by discretizing the variable. In this paper the predictive power of the Cox (1972, Journal of the Royal Statistical Society, Series B 34, 187-202) proportional hazards estimator and the Buckley-James (1979, Biometrika 66, 429-436) censored regression estimator are compared. Using computer simulations and heuristic arguments, it is shown that the choice of method depends on the censoring proportion, strength of the regression, the form of the censoring distribution, and the form of the failure distribution. Several examples are provided to illustrate the usefulness of the methods.

Download full-text PDF

Source

Publication Analysis

Top Keywords

proportional hazards
12
censored survival
8
survival data
8
hazards linear
8
linear regression
8
regression models
8
time failure
8
prediction censored
4
data comparison
4
comparison proportional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!