Purpose: The purpose of this study is to define the mechanistic basis for recovery of proliferative capacity in breast tumor cells after chemotherapy. Here, we test the hypothesis that evasion of senescence confers resistance to chemotherapeutic drugs and ionizing radiation.

Experimental Design: MCF-7 cells were treated with a single, clinically relevant dose (0.75-1.0 micromol/L) of Adriamycin. Two weeks following induction of senescence, clonal outgrowths were expanded and characterized in terms of senescence-associated beta-galactosidase activity, gene expression profiles (Affymetrix U95 probe sets, Affymetrix, Santa Clara, CA) with confirmatory Western analyses, and telomerase activity following a second drug treatment. Levels of intracellular Adriamycin, as well as cross-resistance to other therapeutic agents, were also determined to define the resistance phenotype.

Results: A senescence-resistant (SR) clone (clone 2) was identified that was largely refractory to both Adriamycin-induced and gamma-irradiation-induced senescence. Clone 2 continued to proliferate and maintain high levels of telomerase activity following a second drug treatment, when treated parental cells expressed very low levels of telomerase and many positive cell cycle regulators. SR clone 2 also expressed substantially more cdc-2 than parental cells and undetectable levels of MDR1, showed an intact p53 checkpoint and only a modestly lower level of intracellular drug accumulation, while exhibiting cross-resistance to other topoisomerase inhibitors.

Conclusions: SR clone 2 is intrinsically resistant to DNA damage-induced senescence perhaps through an ability to prevent down-regulation of cdc-2. Telomerase is a marker of proliferative recovery for breast cancer cells after chemotherapy exposure. Evasion or escape from a single-step, drug-induced senescence may represent a unique and previously unrecognized drug-resistance phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-04-1462DOI Listing

Publication Analysis

Top Keywords

breast cancer
8
cancer cells
8
cells chemotherapy
8
telomerase activity
8
activity second
8
second drug
8
drug treatment
8
levels telomerase
8
parental cells
8
senescence
6

Similar Publications

Tumor heterogeneity remains a formidable obstacle in targeted cancer therapy, often leading to suboptimal treatment outcomes. This study presents an innovative approach that harnesses controlled inflammation to guide neutrophil-mediated drug delivery, effectively overcoming the limitations imposed by tumor heterogeneity. By inducing localized inflammation within tumors using lipopolysaccharide, it significantly amplify the recruitment of drug-laden neutrophils to tumor sites, irrespective of specific tumor markers.

View Article and Find Full Text PDF

Early cancer detection substantially improves the rate of patient survival; however, conventional screening methods are directed at single anatomical sites and focus primarily on a limited number of cancers, such as gastric, colorectal, lung, breast, and cervical cancer. Additionally, several cancers are inadequately screened, hindering early detection of 45.5% cases.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how changes in the Ki67 biomarker before and after neoadjuvant chemotherapy (NACT) affect survival in patients with triple-negative breast cancer (TNBC).
  • Among 1,777 TNBC patients analyzed, most showed a decrease in tumor size and Ki67 levels after NACT, though many had no change or experienced treatment discontinuation.
  • Patients with unchanged Ki67 had significantly worse overall and disease-specific survival compared to those with decreased Ki67, emphasizing the need for personalized treatment strategies based on ongoing monitoring of this biomarker.
View Article and Find Full Text PDF

Elevated MRPS23 expression facilitates aggressive phenotypes in breast cancer cells.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.

Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).

View Article and Find Full Text PDF

In this study, the effects of histone deacetylase inhibitor CI-994 and nanotechnological drug liposomal cisplatin LipoPlatin on Luminal A breast cancer and triple-negative breast cancer were explored using agents alone and in combination. MCF-7 and MDA-MB-231 cell lines were used. Cell viability, and cell index values obtained from xCELLigence System, MI, BrdU LI and AI were evaluated in experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!