The Mercury Laser Altimeter (MLA), developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography by laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.44.001748DOI Listing

Publication Analysis

Top Keywords

optical system
8
mercury laser
8
laser altimeter
8
system design
4
design integration
4
integration mercury
4
altimeter mercury
4
altimeter mla
4
mla developed
4
developed 2004
4

Similar Publications

Taking advantage of the good mechanical strength of expanded Drosophila brains and to tackle their relatively large size that can complicate imaging, we apply potassium (poly)acrylate-based hydrogels for expansion microscopy (ExM), resulting in a 40x plus increased resolution of transgenic fluorescent proteins preserved by glutaraldehyde fixation in the nervous system. Large-volume ExM is realized by using an axicon-based Bessel lightsheet microscope, featuring gentle multi-color fluorophore excitation and intrinsic optical sectioning capability, enabling visualization of Tm5a neurites and L3 lamina neurons with photoreceptors in the optic lobe. We also image nanometer-sized dopaminergic neurons across the same intact iteratively expanded Drosophila brain, enabling us to measure the 3D expansion ratio.

View Article and Find Full Text PDF

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

Electronic ferroelectricity in monolayer graphene moiré superlattices.

Nat Commun

December 2024

Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.

Extending ferroelectric materials to two-dimensional limit provides versatile applications for the development of next-generation nonvolatile devices. Conventional ferroelectricity requires materials consisting of at least two constituent elements associated with polar crystalline structures. Monolayer graphene as an elementary two-dimensional material unlikely exhibits ferroelectric order due to its highly centrosymmetric hexagonal lattices.

View Article and Find Full Text PDF

Rapid optical determination of salivary cortisol responses in individuals undergoing physiological and psychological stress.

Sci Rep

December 2024

Research Centre for Biomedical Engineering (RCBE), School of Science and Technology, City, University of London, Northampton Square, London, EC1V 0HB, UK.

Traditional methods for management of mental illnesses in the post-pandemic setting can be inaccessible for many individuals due to a multitude of reasons, including financial stresses and anxieties surrounding face-to-face interventions. The use of a point-of-care tool for self-management of stress levels and mental health status is the natural trajectory towards creating solutions for one of the primary contributors to the global burden of disease. Notably, cortisol is the main stress hormone and a key logical indicator of hypothalamic-pituitary adrenal (HPA) axis activity that governs the activation of the human stress system.

View Article and Find Full Text PDF

In optical imaging of solid tumors, signal contrasts derived from inherent tissue temperature differences have been employed to distinguish tumor masses from surrounding tissue. Moreover, with the advancement of active infrared imaging, dynamic thermal characteristics in response to exogenous thermal modulation (heating and cooling) have been proposed as novel measures of tumor assessment. Contrast factors such as the average rate of temperature changes and thermal recovery time constants have been investigated through an active thermal modulation imaging approach, yielding promising tumor characterization results in a xenograft mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!