Purpose: To probe the presence of apoptosis in the epithelium of human lenses with age-related cortical cataract as well as to assess cell proliferation, a predicted consequence of apoptotic cell death, in this specific cell population.

Methods: DNA fragmentation was assessed using terminal digoxigenin-labeled dUTP nick end labeling (TUNEL) in capsulotomy specimens obtained from patients who underwent either extracapsular cataract extraction for the removal of adult-onset cortical cataract (n=27) or clear lens extraction for the correction of high myopia (n=25). Cell proliferation was assayed in 23 epithelia of cataractous lenses, and 20 epithelia of non-cataractous lenses with the proliferation marker MIB1, a monoclonal antibody against the nuclear antigen Ki-67 that is detected throughout the cell cycle but is absent in the resting (G0) cell.

Results: TUNEL staining was observed in 25 (92.6%) specimens of cataractous lenses, whereas cells undergoing apoptosis were identified in 2 (8%) of the epithelia from non-cataractous lenses. Only two MIB1-positive samples were detected, one of which was a capsule obtained during intracapsular cataract extraction.

Conclusions: The epithelium of human lenses with cortical cataract undergoes low rate apoptotic death. This limited epithelial apoptosis is unlikely to result in any significant cell density decrease since epithelial gaps are likely to be replaced by cell proliferation at the germinative zone of the anterior lens capsule. Nevertheless, the accumulation of small-scale epithelial losses during lifetime may induce alterations in lens fiber formation and homeostasis and result in loss of lens transparency.

Download full-text PDF

Source
http://dx.doi.org/10.1177/112067210501500206DOI Listing

Publication Analysis

Top Keywords

cell proliferation
16
cortical cataract
16
epithelial apoptosis
8
cell
8
age-related cortical
8
epithelium human
8
human lenses
8
cataractous lenses
8
epithelia non-cataractous
8
non-cataractous lenses
8

Similar Publications

Objective: Endometrial cancer (EC) is a malignant tumor with various histological subtypes and molecular phenotypes. The evaluation of drug resistance is important for cancer treatment. Progesterone resistance is the major challenge in EC.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common malignant primary brain tumor, with a mean survival of less than 2 years. Unique brain structures and the microenvironment, including blood-brain barriers, put great challenges on clinical drug development. Sophoricoside (Sop), an isoflavone glycoside isolated from seeds of Sophora japonica L.

View Article and Find Full Text PDF

Introduction: Angioimmunoblastic T-cell lymphoma (AITL) is a rare and aggressive lymphoma with a poor prognosis. AITL is associated with Epstein-Barr virus (EBV)-positive B cells in most cases, suggesting a possible role for the virus in the pathobiology of AITL. Cell lines from AITL patients do not exist and models of human AITL are needed.

View Article and Find Full Text PDF

Unlabelled: Engineered three-dimensional (3D) tissue culture platforms are useful for reproducing and elucidating complex in vivo biological phenomena. Spheroids, 3D aggregates of living cells, are produced based on physicochemical or microfabrication technologies and are commonly used even in cancer pathology research. However, conventional methods have difficulties in constructing 3D structures depending on the cell types, and require specialized techniques/lab know-how to reproducibly control the spheroid size and shape.

View Article and Find Full Text PDF

Adipo-on-chip: a microphysiological system to culture human mesenchymal stem cells with improved adipogenic differentiation.

In Vitro Model

December 2024

Laboratório de Biologia Básica de Células-Tronco, FIOCRUZ, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, Curitiba, Paraná PR 81350-010 Brazil.

Obesity is associated with several comorbidities that cause high mortality rates worldwide. Thus, the study of adipose tissue (AT) has become a target of high interest because of its crucial contribution to many metabolic diseases and metabolizing potential. However, many AT-related physiological, pathophysiological, and toxicological mechanisms in humans are still poorly understood, mainly due to the use of non-human animal models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!