Resistance of paramyxoviridae to type I interferon-induced Bos taurus Mx1 dynamin.

J Interferon Cytokine Res

Department of Pathology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium.

Published: April 2005

Typical targets of type I interferon (IFN)-induced antiviral Mx proteins known to date have been shown to share a common profile: single-stranded negative-sense RNA viruses. Among them, human MxA is known to interfere with the replication of measles, human, and bovine parainfluenza-3 viruses (BoPi3V), that is, three members of the Paramyxoviridae family. Recently, bovine Mx1 protein (BoMx1) was included in the group of Mx proteins with authenticated antiviral potential, as it dramatically represses the replication of vesicular stomatitis virus (VSV). As replication in bovine cells of Pi3, respiratory syncytial (RS), and Sendai (Se) viruses, all members of the same family, is known to be reduced on IFN-alpha incorporation into the culture medium, it was hypothesized that the BoMx1 pathway possibly was involved, its antiviral spectrum thus probably extending to Paramyxoviridae. In this study, probing of BoMx1-inhibiting effects was carried out by infecting a transgenic Vero cell line that allows tightly regulated conditional expression of BoMx1 after doxycycline treatment with a wide array of Paramyxoviridae. Expressing and nonexpressing cells displayed similar viability, cytopathic effects (CPEs), and amounts of infectious virus yields, whatever the infecting virus or the multiplicity of infection (moi) imposed. It is, therefore, concluded that BoMx1 does not interfere with Paramyxoviridae.

Download full-text PDF

Source
http://dx.doi.org/10.1089/jir.2005.25.192DOI Listing

Publication Analysis

Top Keywords

resistance paramyxoviridae
4
paramyxoviridae type
4
type interferon-induced
4
interferon-induced bos
4
bos taurus
4
taurus mx1
4
mx1 dynamin
4
dynamin typical
4
typical targets
4
targets type
4

Similar Publications

The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a recombinant virus-like particle (VLP) vaccine based on the Newcastle Disease Virus (NDV) platform, displaying a stabilized prefusion form of the SARS-CoV-2 spike (S) protein. This engineered S protein includes two proline substitutions (K986P, V987P) and a mutation at the cleavage site (RRAR to QQAQ), aimed at enhancing both its stability and immunogenicity.

View Article and Find Full Text PDF

Newcastle disease (ND) is among the most common and deadliest poultry diseases worldwide. Thermostable Newcastle disease virus (NDV) vaccines have been widely used to protect village chickens against ND due to their decreased dependence on cold chains for transport and storage. The NDV4 Heat-Resistant (NDV4HR) vaccine is an apathogenic, heat-resistant, live vaccine that can induce immunity in chickens.

View Article and Find Full Text PDF

Oncolytic measles virus-induced cell killing in radio-resistant and drug-resistant nasopharyngeal carcinoma.

Malays J Pathol

December 2024

Universiti Tunku Abdul Rahman, M. Kandiah Faculty of Medicine and Health Sciences, Department of Pre-clinical Sciences, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia.

Introduction: The current first-line therapy for nasopharyngeal carcinoma (NPC) is often associated with long-term complications. Oncolytic measles virus (MV) therapy offers a promising alternative to cancer therapy. This study aims to investigate the efficacy of MV in killing NPC cells in vitro, both with or without resistance to radiation and drug therapy.

View Article and Find Full Text PDF
Article Synopsis
  • Mumps virus (MuV) is still active globally despite high vaccination rates, and its early cellular targets in the body are unclear.
  • Researchers developed a GFP-tagged MuV strain to investigate which immune cells are most affected, finding that monocytes are particularly susceptible to infection.
  • In studies with mice and human cells, alveolar macrophages were identified as key targets for MuV, indicating their role in the virus's early pathogenesis and spread in the body.
View Article and Find Full Text PDF

Genome-wide CRISPR screen reveals specific role of type I interferon signaling pathway in Newcastle disease virus establishment of persistent infection.

Vet Microbiol

January 2025

Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China. Electronic address:

Newcastle disease virus (NDV) is a potent oncolytic agent that exhibits sensitivity to a wide range of cancer cells. Unfortunately, some cancer cells are able to resist NDV-mediated oncolysis, by developing a persistent infection. The mechanism of persistency of infection remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!