Bioluminescence is a common phenotype in marine bacteria, such as Vibrio and Photobacterium species, and can be quorum regulated by N-acylated homoserine lactones (AHLs). We extracted a molecule that induced a bacterial AHL monitor (Agrobacterium tumefaciens NT1 [pZLR4]) from packed cod fillets, which spoil due to growth of Photobacterium phosphoreum. Interestingly, AHLs were produced by 13 nonbioluminescent strains of P. phosphoreum isolated from the product. Of 177 strains of P. phosphoreum (including 18 isolates from this study), none of 74 bioluminescent strains elicited a reaction in the AHL monitor, whereas 48 of 103 nonbioluminescent strains did produce AHLs. AHLs were also detected in Aeromonas spp., but not in Shewanella strains. Thin-layer chromatographic profiles of cod extracts and P. phosphoreum culture supernatants identified a molecule similar in relative mobility (Rf value) and shape to N-(3-hydroxyoctanoyl)homoserine lactone, and the presence of this molecule in culture supernatants from a nonbioluminescent strain of P. phosphoreum was confirmed by high-performance liquid chromatography-positive electrospray high-resolution mass spectrometry. Bioluminescence (in a non-AHL-producing strain of P. phosphoreum) was strongly up-regulated during growth, whereas AHL production in a nonbioluminescent strain of P. phosphoreum appeared constitutive. AHLs apparently did not influence bioluminescence, as the addition of neither synthetic AHLs nor supernatants delayed or reduced this phenotype in luminescent strains of P. phosphoreum. The phenotypes of nonbioluminescent P. phosphoreum strains regulated by AHLs remains to be elucidated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1082519 | PMC |
http://dx.doi.org/10.1128/AEM.71.4.2113-2120.2005 | DOI Listing |
Microbiol Spectr
December 2024
Department of Poultry Science, Mississippi State University, Mississippi State, Mississippi, USA.
Unlabelled: enterica serotype Reading has recently been identified as a significant foodborne pathogen from contaminated poultry products. There is a critical need for close monitoring of this newly emerged pathogen. This study developed bioluminescent strains of Reading for real-time pathogen tracking using bioluminescence imaging.
View Article and Find Full Text PDFHarmful Algae
September 2020
Ocean Research and Conservation Association, 1420 Seaway Dr, Fort Pierce, FL 34949, United States. Electronic address:
Dinoflagellates are an ecologically important group of marine microbial eukaryotes with a remarkable array of adaptive strategies. It is ironic that two of the traits for which dinoflagellates are best known, toxin production and bioluminescence, are rarely linked when considering the ecological significance of either. Although dinoflagellate species that form some of the most widespread and frequent harmful algal blooms (HABs) are bioluminescent, the molecular and eco-evolutionary associations between these two traits has received little attention.
View Article and Find Full Text PDFLimnol Oceanogr
November 2019
Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA.
The globally distributed heterotrophic dinoflagellate (Macartney) Kofoid & Swezy is well known for its dense blooms and prominent displays of bioluminescence. Intriguingly, along the west coast of the USA its blooms are not bioluminescent. We investigated the basis for the regional loss of bioluminescence using molecular, cellular and biochemical analyses of isolates from different geographic regions.
View Article and Find Full Text PDFJ Vis Exp
June 2018
Institute of Biochemistry, Graz University of Technology;
There is a considerable number of bacterial species capable of emitting light. All of them share the same gene cluster, namely the lux operon. Despite this similarity, these bacteria show extreme variations in characteristics like growth behavior, intensity of light emission or regulation of bioluminescence.
View Article and Find Full Text PDFPeerJ
July 2016
Bioluminescent Superbugs Lab, University of Auckland, Auckland, New Zealand; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand.
Bioluminescent reporter genes, such as those from fireflies and bacteria, let researchers use light production as a non-invasive and non-destructive surrogate measure of microbial numbers in a wide variety of environments. As bioluminescence needs microbial metabolites, tagging microorganisms with luciferases means only live metabolically active cells are detected. Despite the wide use of bioluminescent reporter genes, very little is known about the impact of continuous (also called constitutive) light expression on tagged bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!