Objectives: The objective of this work was to determine the effects of starvation versus refeeding following a high-sucrose diet (HS) or high-fat diet (HF) on fatty acid metabolism in mice.
Methods: The mice were fed an AIN-76 control diet (CD), a modified HS, or an HF. The three dietary groups were subdivided into three groups each: those fed experimental diets for 12 wk, mice starved for 48 h after 12 wk on an experimental diet, and those with the same starvation treatment but with 72 h of refeeding after starvation, respectively.
Results: Serum total cholesterol levels of CD and HF groups decreased and then increased under starvation and refeeding states, respectively. Refeeding HS and HF increased serum levels of low-density lipoprotein (LDL) cholesterol compared with refeeding of the CD group. Starvation significantly increased hepatic levels of total cholesterol in the HS and HF groups compared with the CD group. Hepatic acyl coenzyme A (CoA) synthetase (ACS) levels in the CD and HS groups but not the HF group increased and then decreased under starved and refed states, respectively; an opposite regulation was observed in the HF group. Levels of hepatic acetyl-CoA carboxylase (ACC) in the HS and HF groups were significantly increased by refeeding. Hepatic levels of carnitine palmitoyltransferase-I mRNA were significantly enhanced by starvation and refeeding in the HS group but decreased in CD and then increased in the HF group.
Conclusions: Changes in dietary energy nutrients, fasting, and refeeding affect hepatic ACS, CPT-I, and ACC mRNA expression, and these results will serve to enhance our understanding of the molecular mechanisms underlying regulation of fatty acid metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nut.2005.01.001 | DOI Listing |
Bioessays
January 2025
Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria.
Adipose tissue (AT) inflammation, a hallmark of the metabolic syndrome, is triggered by overburdened adipocytes sending out immune cell recruitment signals during obesity development. An AT immune landscape persistent throughout weight loss and regain constitutes an immune-obesogenic memory that hinders long-term weight loss management. Lipid-associated macrophages (LAMs) are emerging as major players in diseased, inflamed metabolic tissues and may be key contributors to an obesogenic memory in AT.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain; Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Madrid, Spain.
PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity.
View Article and Find Full Text PDFAnn Transl Med
December 2024
[This corrects the article DOI: 10.21037/atm-22-222.].
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Section of Osteimmunology and Oral Immunology, Laboratory of Dental Reseach. FES Iztacala, National Autonomous University of Mexico (UNAM), México, Mexico State, México.
Unlabelled: LCN2 has an osteokine important for appetite regulation; in type 2 diabetes (T2D) it is not known whether appetite regulation mediated by LCN2 in the brain is altered. In this work, we focus on exploring the role of blocking LCN2 in metabolic health and appetite regulation within the central nervous system of mice with T2D.
Material And Methods: 4-week-old male C57BL/6 mice were used, divided into four experimental groups: intact, T2D, TD2/anti-LCN2, and T2D/IgG as isotype control.
Sci Rep
January 2025
Laboratory of Biochemistry, College of Veterinary Medicine, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Korea.
The mechanisms underlying exercise-induced insulin sensitization are of great interest, as exercise is a clinically critical intervention for diabetic patients. Some microRNAs (miRs) are secreted from skeletal muscle after exercise where they regulate insulin sensitivity, and have potential as diagnostic markers in diabetic patients. miR-204 is well-known for its involvement in development, cancer, and metabolism; however, its role in exercise-induced glycemic control remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!