The recently developed polycyclic nitramine CL-20 is considered as a possible replacement for the monocyclic nitramines RDX and HMX. The present study reports aqueous solubility data for CL-20, as well as the kinetic parameters for its alkaline hydrolysis with sodium hydroxide below and above its solubility limits. Aqueous solubility of CL-20 was measured in the temperature range of 4-69 degrees C and the data were fitted to a generalized solubility model. Alkaline hydrolysis experiments were conducted at 15, 20, 30 and 40 degrees C, with hydroxide concentrations ranging from 0.25 to 300 mM. Like RDX and HMX, alkaline hydrolysis of CL-20 follows second-order kinetics. CL-20 alkaline hydrolysis was found to proceed at a significantly faster rate than RDX. The temperature dependency of the second-order rate constants was evaluated using the Arrhenius model. The activation energy for CL-20 was found to be within close range of the activation energies reported for RDX and HMX.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2005.01.001DOI Listing

Publication Analysis

Top Keywords

alkaline hydrolysis
20
aqueous solubility
12
rdx hmx
12
cl-20
7
alkaline
5
hydrolysis
5
solubility alkaline
4
hydrolysis novel
4
novel high
4
high explosive
4

Similar Publications

Effect of Ultrasound Treatment on Structural and Physical Properties of Native Maize Starch.

Plant Foods Hum Nutr

January 2025

Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) - CONICET-UNC, Av. Juan Filloy S/N, Ciudad Universitaria, Córdoba, Argentina.

The focus of this work was to evaluate the differences between the thermal and mechanical effects generated by ultrasound waves on the properties of corn starch, which facilitate the subsequent enzymatic hydrolysis for the generation of porous starches. The results showed that both the thermal and mechanical effects have the capacity to disorganize/alter the structure of starch, impacting on its properties. Characteristics such as particle size, pasting and thermal properties (peak viscosity 1400-1800 cp.

View Article and Find Full Text PDF

Preparation and Adsorption Properties of Sodium Trimetaphosphate Crosslinked Porous Corn Starch.

Biopolymers

March 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China.

The crosslinked porous corn starch was prepared by two steps: the native corn starch was hydrolyzed by α-amylase and glucoamylase, then the porous corn was crosslinked by sodium trimetaphosphate (STMP). The morphology and size of granules, spherulites, crystal type, molecular structure, swelling properties, thermal stability and adsorption properties of the crosslinked porous starch were investigated. The results indicated that a lot of holes formed in the porous starch, and the particle size of starch granules decreased.

View Article and Find Full Text PDF

The leaves of have been used in treating freckles and effectively reducing cough and sputum in folk medicines. Recently, investigations into the correlation between ginkgo leaves and the proliferative activity of osteogenic differentiation have been conducted. However, bioactive compounds that enhance osteogenesis or exhibit osteoporosis prevention from have not been fully identified.

View Article and Find Full Text PDF

The ubiquitous presence, potential toxicity, and persistence of 2-ethylhexyl diphenyl phosphate (EHDPP) in the environment have raised significant concerns. In this study, we successfully isolate a novel microbial consortium, named 8-ZY, and we demonstrate its remarkable ability to degrade EHDPP using an extremely low concentration of the inoculate. A total of 11 degradation metabolites were identified, including hydrolysis, hydroxylated, methylated, glucuronide-conjugated, and previously unreported byproducts, enabling us to propose new transformation pathways.

View Article and Find Full Text PDF

A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO nanosheets (Au NCs-MnO NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO NSs to Mn and facilitate the fluorescence recovery of Au NCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!