The properties of the heme, flavin mononucleotide (FMN) and FeS domains of P450 RhF, from Rhodococcus sp. NCIMB 9784, expressed separately and in combination are analysed. The nucleotide preference, imidazole binding and reduction potentials of the heme and FMN domains are unaltered by their separation. The intact enzyme is monomeric and the flavin is confirmed to be FMN. The two one-electron reduction potentials of the FMN are -240 and -270 mV. The spectroscopic and thermodynamic properties of the FeS domain, masked in the intact enzyme, are revealed for the first time, confirming it as a 2Fe-2S ferredoxin with a reduction potential of -214 mV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2005.03.016 | DOI Listing |
Methods Enzymol
November 2023
Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, United States. Electronic address:
In recent years, cytochromes P450 have emerged as powerful, versatile biocatalysts for the site-selective functionalization of small molecules. Catalyzing an impressive range of chemical transformations, these enzymes have been widely used to effect C-H oxidation, biaryl coupling, and carbon-heteroatom bond formation, among many other reactions. However, the majority of P450s are multi-protein systems that employ secondary redox partners in key steps of the catalytic cycle, which limits their broader applicability.
View Article and Find Full Text PDFMicrob Biotechnol
September 2021
Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile.
The self-sufficient cytochrome P450 RhF and its homologues belonging to the CYP116B subfamily have attracted considerable attention due to the potential for biotechnological applications based in their ability to catalyse an array of challenging oxidative reactions without requiring additional protein partners. In this work, we showed for the first time that a CYP116B self-sufficient cytochrome P450 encoded by the ohpA gene harboured by Cupriavidus pinatubonensis JMP134, a β-proteobacterium model for biodegradative pathways, catalyses the conversion of 2-hydroxyphenylacetic acid (2-HPA) into homogentisate. Mutational analysis and HPLC metabolite detection in strain JMP134 showed that 2-HPA is degraded through the well-known homogentisate pathway requiring a 2-HPA 5-hydroxylase activity provided by OhpA, which was additionally supported by heterologous expression and enzyme assays.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2020
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China. Electronic address:
Cytochrome P450 enzymes (P450 or CYP) are some of the most versatile biocatalysts, and offer advantages for oxidizing unreactive C-H bonds in mild conditions. In this study, we identified a novel cytochrome P450 154C2 from Streptomyces avermitilis and characterized its function in 2α-hydroxylation of testosterone with regio- and stereoselectivity. To investigate the efficiency of electron transfer, we conducted biotransformation using two different P450 redox partners-RhFRED (RhF reductase domain) from Rhodococcus sp.
View Article and Find Full Text PDFBiotechnol J
March 2017
School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
P450 monooxygenases are able to catalyze the highly regio- and stereoselective oxidations of many organic molecules. However, the scale-up of such bio-oxidations remains challenging due to the often-low activity, level of expression and stability of P450 biocatalysts. Despite these challenges they are increasingly desirable as recombinant biocatalysts, particularly for the production of drug metabolites.
View Article and Find Full Text PDFMethods Mol Biol
August 2013
Department of Biology, York University, York, UK.
Cytochromes P450 (P450s) are a family of heme-containing oxidases with considerable potential as tools for industrial biocatalysis. Organismal genomes are revealing thousands of gene sequences that encode P450s of as yet unknown function, the exploitation of which will require high-throughput tools for their isolation and characterization. Here, we describe a new ligation-independent cloning vector (LICRED) that enables the high-throughput generation of libraries of redox-self-sufficient P450s, by fusing a range of P450 heme domains to the reductase of P450RhF (RhF-Red) in a robust and generically applicable way.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!