The impact of mitochondrial genetics on male infertility.

Int J Androl

The University of Birmingham, The Division of Medical Sciences, Birmingham B15 2TJ, UK.

Published: April 2005

Summary Human mitochondrial DNA (mtDNA) encodes 13 of the polypeptides associated with the process of oxidative phosphorylation (OXPHOS), the cells most important ATP generating pathway. Until recently, the effects of mtDNA rearrangements on male fertility have been largely ignored. However, it is becoming increasingly evident that both point mutations and large-scale deletions may have an impact on sperm motility and morphology. We discuss the implications of these rearrangements in the context of the clinical setting. We further discuss the possible consequences resulting from the transmission of sperm mtDNA deletions to the offspring. The role of nucleo-cytoplasmic interaction is investigated in the context of nuclear transcription and replication factors that regulate mtDNA transcription and replication.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2605.2005.00515.xDOI Listing

Publication Analysis

Top Keywords

transcription replication
8
impact mitochondrial
4
mitochondrial genetics
4
genetics male
4
male infertility
4
infertility summary
4
summary human
4
human mitochondrial
4
mitochondrial dna
4
mtdna
4

Similar Publications

Viruses engage in a variety of processes to subvert host defenses and create an environment amenable to replication. Here, using rotavirus as a prototype, we show that calcium conductance out of the endoplasmic reticulum by the virus encoded ion channel, , induces intercellular calcium waves that extend beyond the infected cell and contribute to pathogenesis. Viruses that lack the ability to induce this signaling show diminished viral shedding and attenuated disease in a mouse model of rotavirus diarrhea.

View Article and Find Full Text PDF

Polycystic kidney diseases (PKD) are genetic disorders which disrupt kidney architecture and function. Autosomal recessive PKD (ARPKD) is a rare form of PKD, caused by mutations in PKHD1, and clinically more severe than the more common autosomal dominant PKD (ADPKD). Prior studies have implicated Hedgehog (Hh) signaling in ADPKD, with increased levels of Hh components in experimental ADPKD and reduced cystogenesis following pharmacological Hh inhibition.

View Article and Find Full Text PDF

BEND6 promotes RNA viruses' replication by inhibiting innate immune responses.

Sci China Life Sci

January 2025

National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.

Innate immunity serves as a crucial defense mechanism against invading pathogens, yet its negative regulatory network remains under explored. In this study, we identify BEN domain-containing protein 6 (BEND6) as a novel negative regulator of innate immunity through a genome-scale CRISPR knockout screen for host factors essential for viral replication. We show that BEND6 exhibits characteristics of an interferon-stimulated gene (ISG), with its mRNA and protein levels upregulated by RNA virus-induced IFN-β.

View Article and Find Full Text PDF

Nanopore sequencing reveals that DNA replication compartmentalisation dictates genome stability and instability in Trypanosoma brucei.

Nat Commun

January 2025

University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom.

The Trypanosoma brucei genome is structurally complex. Eleven megabase-sized chromosomes each comprise a transcribed core flanked by silent subtelomeres, housing thousands of Variant Surface Glycoprotein (VSG) genes. Additionally, hundreds of sub-megabase chromosomes contain 177 bp repeats of unknown function, and VSG transcription sites localise to many telomeres.

View Article and Find Full Text PDF

The hidden weavers: A review of DNA/RNA R-loops in stem cell biology and therapeutic potential.

Int J Biol Macromol

January 2025

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China. Electronic address:

R-loops, three-stranded nucleic acid structures composed of RNA-DNA hybrids, are increasingly recognized as central regulators of genomic stability and transcription. These structures play critical roles across various cellular processes, including DNA replication, repair, and gene regulation, with significant implications for stem cell biology and disease pathogenesis. This review comprehensively explores the molecular underpinnings of R-loop formation, emphasizing the dual nature of R-loops in both facilitating normal cellular functions and contributing to genomic instability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!