The 14-electron ruthenium phosphonium alkylidene complex [(IH2Mes)Cl2Ru=CH(PCy3)][B(C6F5)4], 1b, a highly active olefin metathesis catalyst, reacts with stoichiometric quantities of ethylene at -50 degrees C in CD2Cl2 to generate the ruthenacyclobutane complex [(IH2Mes)Cl2RuCH2CH2CH2], 2, and [CH2=CH(PCy3)][B(C6F5)4] in quantitative yield by NMR spectroscopy. 1H and 13C NMR spectroscopies on 2 and 2-13C3 are consistent with a symmetrical C2v structure, providing the first experimental information concerning this crucial intermediate in ruthenium-mediated olefin metathesis. At -50 degrees C, exchange with free ethylene takes place on the chemical time scale. Complex 2 decomposes in solution upon warming to room temperature, generating propene and unknown ruthenium product(s).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja042259dDOI Listing

Publication Analysis

Top Keywords

olefin metathesis
12
-50 degrees
8
direct observation
4
observation 14-electron
4
14-electron ruthenacyclobutane
4
ruthenacyclobutane relevant
4
relevant olefin
4
metathesis 14-electron
4
14-electron ruthenium
4
ruthenium phosphonium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!