Convergent synthesis of a fully lipidated glycosylphosphatidylinositol anchor of Plasmodium falciparum.

J Am Chem Soc

Laboratory for Organic Chemistry, ETH Zürich, Wolfgang-Pauli-Str. 10, HCI F315, 8093 Zürich, Switzerland.

Published: April 2005

A highly convergent strategy for the synthesis of fully lipidated GPI anchors of malarial origin is reported. This strategy utilized three orthogonal protecting groups, which can be chemoselectively deprotected and functionalized in the late stage of the synthesis. Rapid access to the target GPIs in a highly efficient manner in sufficient quantities for the biological studies has been achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja042374oDOI Listing

Publication Analysis

Top Keywords

synthesis fully
8
fully lipidated
8
convergent synthesis
4
lipidated glycosylphosphatidylinositol
4
glycosylphosphatidylinositol anchor
4
anchor plasmodium
4
plasmodium falciparum
4
falciparum highly
4
highly convergent
4
convergent strategy
4

Similar Publications

Soil salinity poses a significant environmental challenge for the growth and development of blueberries. However, the specific mechanisms by which blueberries respond to salt stress are still not fully understood. Here, we employed a comprehensive approach integrating physiological, metabolomic, and transcriptomic analyses to identify key metabolic pathways in blueberries under salt stress.

View Article and Find Full Text PDF

The PurR family transcriptional regulator promotes butenyl-spinosyn production in Saccharopolyspora pogona.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Butenyl-spinosyn, derived from Saccharopolyspora pogona, is a broad-spectrum and effective bioinsecticide. However, the regulatory mechanism affecting butenyl-spinosyn synthesis has not been fully elucidated, which hindered the improvement of production. Here, a high-production strain S.

View Article and Find Full Text PDF

The evolution of signaling and monitoring in plant-fungal networks.

Proc Natl Acad Sci U S A

January 2025

Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom.

Experiments have shown that when one plant is attacked by a pathogen or herbivore, this can lead to other plants connected to the same mycorrhizal network up-regulating their defense mechanisms. It has been hypothesized that this represents signaling, with attacked plants producing a signal to warn other plants of impending harm. We examined the evolutionary plausibility of this and other hypotheses theoretically.

View Article and Find Full Text PDF

Sublethal changes to coral metabolism in response to deoxygenation.

J Exp Biol

January 2025

Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST); Thuwal, Saudi Arabia.

Coastal deoxygenation poses a critical threat to tropical coral reefs. Dissolved oxygen (DO) depletion can cause hypoxia-induced stress and mortality for scleractinian corals. Coral hypoxic responses are species-specific and likely modulated by the duration and severity of low-DO conditions, although the physiological mechanisms driving hypoxia tolerance are not fully understood.

View Article and Find Full Text PDF

encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!