Background: The purpose of this study was to investigate the acute action of vascular endothelial growth factor (VEGF) in the microcirculation of skeletal muscle subject to ischemia/reperfusion in vivo and to determine the role of nitric oxide synthase in VEGF-induced microvascular protection.

Methods: A vascular pedicle isolated rat cremaster muscle model coupled with local intraarterial infusion technique was used. Each muscle underwent 4 hours of zero-flow warm ischemia followed by 2 hours of reperfusion. Femoral artery cannulation was performed before reperfusion. The infusate was administered by continuous infusion into the arterial tree of the muscle beginning at 1 minute before reperfusion and at the rate of 0.1 ml/hour throughout the entire reperfusion period. Three groups were designed: (1) the ischemia/reperfusion group, with infusion normal saline; (2) the VEGF plus ische-mia/reperfusion group, with infusion of recombinant human VEGF165 protein; and (3) the L-NA plus VEGF plus ischemia/reperfusion group, with infusion of N-nitro-L-arginine (L-NA; a nonselective nitric oxide synthase antagonist) mixed with VEGF165 protein. After 2 hours of reperfusion, microcirculation measurements including arteriole diameter, capillary perfusion, and endothelium-dependent and endothelium-independent vasodilatation were performed. The muscle was harvested and processed for reverse-transcriptase polymerase chain reaction for measuring eNOS and endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) gene expression.

Results: Reperfusion caused significant microvascular alterations including vasoconstriction, poor capillary perfusion, and endothelial dysfunction in the skeletal muscle. These alterations were significantly attenuated by intraarterial infusion of VEGF during reperfusion, but the beneficial effect of VEGF was reduced significantly by coadministration of L-NA. Reverse-transcriptase polymerase chain reaction study revealed that ischemia/reperfusion depressed eNOS mRNA expression but enhanced iNOS mRNA expression. Intraarterial infusion of VEGF during reperfusion amplified mRNA expression of eNOS but not of iNOS.

Conclusions: Local intraarterial infusion of VEGF produced significant microvascular protection from skeletal muscle ischemia/reperfusion injury. The VEGF-induced enhancement of eNOS may play an important mechanistic role.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.prs.0000156980.38387.8dDOI Listing

Publication Analysis

Top Keywords

skeletal muscle
16
nitric oxide
16
oxide synthase
16
intraarterial infusion
16
group infusion
12
infusion vegf
12
mrna expression
12
action vascular
8
vascular endothelial
8
endothelial growth
8

Similar Publications

Duchenne muscular dystrophy is a neuromuscular disease with an overall incidence of between 1 in 5,000 newborn males. Carriers may manifest progressive muscle weakness, resulting from the progressive degeneration of skeletal muscles, generating cardiac and respiratory disorders. Considering the lack of effective treatments, different therapeutic approaches have been developed, such as protein synthesis and extracellular matrix derivatives that can be used to improve muscle regeneration, maintenance, or repair.

View Article and Find Full Text PDF

Intrahepatic cholangiocarcinoma (ICC)originates from the epithelial cells of the intrahepatic bile ducts, with insidious onset and strong invasiveness, and most of the cases are found in the advanced stage, with extremely poor prognosis. In advanced stages, distant metastases to the lungs, bones, and brain are common, but distant soft tissue (subcutaneous and skeletal muscle) and breast metastases are rare, and simultaneous metastases to all three rare sites had not been reported. We report a 69-year-old woman with right upper abdominal pain who underwent a plain and enhanced CT scan of the upper abdomen, which revealed an intrahepatic space-occupying lesion, as well as subcutaneous and peritoneal nodules in the abdomen.

View Article and Find Full Text PDF

Background: This video article describes the use of bone-anchored prostheses for patients with transtibial amputations, most often resulting from trauma, infection, or dysvascular disease. Large studies have shown that about half of all patients with a socket-suspended artificial limb experience limited mobility and limited prosthesis use because of socket-related problems. These problems occur at the socket-residual limb interface as a result of a painful and unstable connection, leading to an asymmetrical gait and subsequent pelvic and back pain.

View Article and Find Full Text PDF

Prevalence of Sarcopenia in Connective Tissue Disease Associated Interstitial Lung Diseases: A Single-Centre Study from India.

Mediterr J Rheumatol

December 2024

Department of Pulmonary Medicine, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha, India.

Background: Sarcopenia, a progressive loss of skeletal muscle strength and mass, can lead to decreased quality of life, physical disability, and mortality. Early identification of sarcopenia is crucial in limiting morbidity and mortality in connective tissue disease associated interstitial lung diseases (CTDILD) patients.

Objective: The objectives of this study are to determine the prevalence of sarcopenia in CTD-ILD patients and to correlate the severity of sarcopenia with pulmonary function tests, spirometry, and 6-minute walk test (6MWT).

View Article and Find Full Text PDF

This study aims to analyze the impact of muscle transfer on the glenohumeral joint in children with obstetric brachial plexus palsy (OBPP) using MRI by comparing preoperative and 5-year follow-up postoperative imaging findings to determine whether tendon transfers affect the alignment and configuration of the glenohumeral joint. Ten children with obstetric brachial plexus palsy (OBPP) participated in our prospective observational study, and we performed a tendon transfer technique. Every patient had an MRI of both shoulders done at preoperative and at the 5-year mark following the procedure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!