Disruption of the structural gene for farnesyl diphosphate synthase in Escherichia coli.

J Biochem

Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510.

Published: March 2005

The chromosomal ispA gene encoding farnesyl diphosphate synthase of Escherichia coli was disrupted by inserting a neo gene cassette. The null ispA mutants were viable. The growth yield of the mutants was 70% to 80% of that of the wild-type strain under aerobic conditions, and was almost the same as the wild-type under anaerobic conditions. The levels of ubiquinone-8 and menaquinone-8 were both significantly lower (less than 13% and 18% of normal, respectively) in the mutants than in the wild-type. The undecaprenyl phosphate level in the mutants was modestly lower (40% to 70% of normal) than in the wild-type strain. Thus the synthesis of all-E-octaprenyl diphosphate, the precursor of ubiquinone-8 and menaquinone-8, was decreased more severely than that of Z,E-mixed undecaprenyl diphosphate, the precursor of undecaprenyl monophosphates, under the conditions where the synthesis of farnesyl diphosphate was decreased. The condensation of isopentenyl diphosphate with dimethylallyl diphosphate was detected in the cell-free extracts of the mutants, although it was 5% of that in the wild-type strain. A low level of farnesyl diphosphate seems to be synthesized in the mutants by other prenyltransferases such as octaprenyl diphosphate synthase or undecaprenyl diphosphate synthase.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jb/mvi049DOI Listing

Publication Analysis

Top Keywords

farnesyl diphosphate
16
diphosphate synthase
16
wild-type strain
12
diphosphate
10
synthase escherichia
8
escherichia coli
8
ubiquinone-8 menaquinone-8
8
mutants wild-type
8
diphosphate precursor
8
undecaprenyl diphosphate
8

Similar Publications

Background/purpose: Peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor of energy metabolism-associated genes, and three PPARγ isoforms have been identified in periodontal tissues and cells. When energy metabolism homeostasis is affected by PPARγ downregulation in periodontal ligament fibroblasts (PDLFs), osteo/cementogenic abilities are markedly lost. Herein, we investigated whether PPARγ agonists promote periodontal tissue regeneration, and which PPARγ isoforms and metabolic pathways are indispensable for osteo/cementogenic abilities.

View Article and Find Full Text PDF

Genome-Wide Identification and Expression Profile of () Gene Family in L.

Int J Mol Sci

January 2025

State Key Laboratory of Tropical Crop Breeding, Sanya Institute, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China.

The biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are essential for sesquiterpenes and triterpenes, respectively, is primarily governed by the mevalonate pathway, wherein () plays a pivotal role. This study identified eight members of the FPS gene family in , designated -, through bioinformatics analysis, revealing their distribution across several chromosomes and a notable tandem gene cluster. The genes exhibited strong hydrophilic properties and key functional motifs crucial for enzyme activity.

View Article and Find Full Text PDF

Background: Sesquiterpene ( +)-valencene is a characteristic aroma component from sweet orange fruit, which has a variety of biological activities and is widely used in industrial manufacturing of food, beverage and cosmetics industries. However, at present, the content in plant sources is low, and its yield and quality would be influenced by weather and land, which limit the supply of ( +)-valencene. The rapid development of synthetic biology has accelerated the construction of microbial cell factories and provided an effective alternative method for the production of natural products.

View Article and Find Full Text PDF

Transcriptomic Analysis of Gills Following FPPS Knockdown Reveals Its Regulatory Role in Immune Response.

Int J Mol Sci

December 2024

School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China.

Farnesyl pyrophosphate synthase (FPPS) is a key enzyme in the terpenoid biosynthesis pathway, responsible for converting isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) into farnesyl pyrophosphate (FPP). In crustaceans, FPPS plays an important role in various physiological processes, particularly in synthesizing the crustacean-specific hormone methyl farnesoate (MF). This study analyzed the evolutionary differences in the physicochemical properties, subcellular localization, gene structure, and motif composition of FPPS in (named NdFPPS) compared to other species.

View Article and Find Full Text PDF

The roots of Panax ginseng C. A. Meyer (ginseng) are one of the traditional medicinal herbs in Asian countries and is known as the "king of all herbs".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!