Fructans are polymers that are widely used in several industrial applications. In the last few years they have received increasing interest because of their positive effects on health. At present, fructans are mostly supplied by chicory, which is only grown and processed in The Netherlands, France, and Belgium. It would therefore be an attractive concept to expand its cultivation to the southern European countries, although water shortage and high temperatures may hinder its growth and yield. So far, few experiments have been carried out on the effects of water, so the present research was focused on the course of growth and fructan quality in rainfed (W(0)) and well-watered (W(1)) conditions. The positive effects of water restoration mostly concerned the above-ground dry weight (ADW), whereas the root dry weight (RDW) was less influenced. No significant differences on RDW were found in 1999, whereas it was 14% higher (P <0.01) in W(1) in 2000. The effect of water was very clear on assimilate allocation: the overall priority at the whole plant scale seemed to be root structures, then storage reserves, and finally ADW. Therefore, the fructan content was higher in W(0), and insignificant differences between W(0) and W(1) were found on fructan yield at the final harvests. The only significant effect of the water regime on fructans was to speed up their storage. The leaf photosynthetic capacity (A) was poorly affected by water availability, whereas it appeared consistently modulated by leaf temperature and leaf nitrogen content. Stomatal conductance appeared to be mostly affected by the soil water content and it was mostly related to A up to about 300 mmol m(-2) s(-1). The fructan chain length (DP) was not affected by water regime. Besides, DP classes showed a normal statistical distribution; skewness and kurtosis significantly changed only when the harvest was very late. Equally, a very late harvest time significantly lowered DP.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/eri140DOI Listing

Publication Analysis

Top Keywords

growth fructan
8
positive effects
8
effects water
8
dry weight
8
fructan yield
4
yield quality
4
quality chicory
4
chicory cichorium
4
cichorium intybus
4
intybus photosynthetic
4

Similar Publications

Background: Older people are more susceptible to deterioration of the gut microbiota. Prebiotics help improve the gut microbiota. Inulin, a major prebiotic, stimulates the growth of ; however, it produces a large amount of gas, which leads to abdominal symptoms.

View Article and Find Full Text PDF

Unlabelled: Dietary fibers influence the composition of the human gut microbiota and directly contribute to its downstream effects on host health. As more research supports the use of glycans as prebiotics for therapeutic applications, the need to identify the gut bacteria that metabolize glycans of interest increases. Fructo-oligosaccharide (FOS) is a common diet-derived glycan that is fermented by the gut microbiota and has been used as a prebiotic.

View Article and Find Full Text PDF

Background: Dietary fibre can alleviate or reduce the risk of obesity and obesity-induced abnormalities in glycolipid metabolism. However, the effects of different types of dietary fibre or their combinations on obesity remain unclear. Here, we explored the effects of different ratios of inulin soluble dietary fibre (ISDF) and barley leaf insoluble dietary fibre (BLIDF) on the body weight, glycolipid metabolism and gut microbiota of obese mice.

View Article and Find Full Text PDF

24 (BL24) is an efficient, non-pathogenic producer of 2,3-butanediol (2,3-BD). However, during inulin fermentation, the strain produces large amounts of exopolysaccharides (EPS), which interfere with the process' performance. The present study aims to investigate the effect that inactivation of the gene, encoding levansucrase in BL24, has on 2,3-BD production efficiency.

View Article and Find Full Text PDF

This study was conducted to explore the protective effects of inulin against lipopolysaccharide (LPS)-induced inflammatory response and intestinal barrier dysfunction in broilers. 108 broilers were allocated to 3 treatments: 1) non-challenged broilers (Control, CON); 2) LPS-challenged broilers (LPS); 3) LPS-challenged broilers fed the basal diet supplemented with 15 g/kg of inulin (Inulin + LPS). At 21 d of age, the LPS-challenged groups received an intraperitoneal injection of LPS, and the CON group received an equal volume of saline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!