VvHT1 encodes a monosaccharide transporter expressed in the conducting complex of the grape berry phloem.

J Exp Bot

Unité Mixte de Recherches Centre National de la Recherche Scientifique 6161, Transport des Assimilats, Laboratoire de Physiologie, Biochimie et Biologie Moléculaire Végétales, Bâtiment Botanique, Université de Poitiers, Poitiers, France.

Published: May 2005

The accumulation of sugars in grape berries requires the co-ordinate expression of sucrose transporters, invertases, and monosaccharide transporters. A monosaccharide transporter homologue (VvHT1, Vitis vinifera hexose transporter 1) has previously been isolated from grape berries at the veraison stage, and its expression was shown to be regulated by sugars and abscisic acid. The present work investigates the function and localization of VvHT1. Heterologous expression in yeast indicates that VvHT1 encodes a monosaccharide transporter with maximal activity at acidic pH (pH 4.5) and high affinity for glucose (K(m)=70 muM). Fructose, mannose, sorbitol, and mannitol are not transported by VvHT1. In situ hybridization shows that VvHT1 transcripts are primarily found in the phloem region of the conducting bundles. Immunofluorescence and immunogold labelling experiments localized VvHT1 in the plasma membrane of the sieve element/companion cell interface and of the flesh cells. The expression and functional properties of VvHT1 suggests that it retrieves the monosaccharides needed to provide the energy necessary for cell division and cell growth at an early stage of berry development.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/eri142DOI Listing

Publication Analysis

Top Keywords

monosaccharide transporter
12
vvht1
8
vvht1 encodes
8
encodes monosaccharide
8
grape berries
8
monosaccharide
4
transporter
4
transporter expressed
4
expressed conducting
4
conducting complex
4

Similar Publications

Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.

View Article and Find Full Text PDF

Objective: The objective is to assess the effectiveness and safety of tirzepatide, liraglutide, and SGLT2i in individuals diagnosed with type 2 diabetes.

Methods: An inquiry was undertaken within the electronic database spanning from its inception to February 11th, 2024, aimed at identifying randomized controlled trials that assess the efficacy and safety of tirzepatide, liraglutide, canagliflozin, ertugliflozin, empagliflozin, dapagliflozin, and henagliflozin. Perform a network meta-analysis to examine the distinctions among them (PROSPERO registration number: CRD42024537006).

View Article and Find Full Text PDF

Elevated inflammatory reactions are a significant component in cerebral ischemia-reperfusion injury (CIRI). Activation of α7-Nicotinic Acetylcholine Receptor (α7nAChR) reduces stroke-induced inflammation in rats, but the anti-inflammatory pathway in microglia under CIRI condition remains unclear. This study employed qRT-PCR, protein assays, NanoString analysis, and bioinformatics to examine the effects of PNU282987 treatment (α7nAChR agonist) on BV2 microglial functional differentiation in oxygen-glucose deprivation/reoxygenation (OGDR) condition.

View Article and Find Full Text PDF

Sodium-glucose co-transporter 2 inhibitors (SGLT2i) have emerged as important agents for the treatment of type 2 diabetes mellitus (T2DM). SGLT2 inhibitors have been associated with improved cardiovascular outcomes, not only through their immediate hemodynamic effects-such as glycosuria and (at least temporary) increased natriuresis-but also due to their multifaceted impact on metabolism. Recently, studies have also focused on the effects of SGLT2 inhibitors on adipose tissue.

View Article and Find Full Text PDF

Growth hormone receptor in VGLUT2 or Sim1 cells regulates glycemia and insulin sensitivity.

Proc Natl Acad Sci U S A

December 2024

Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.

Growth hormone (GH) has several metabolic effects, including a profound impact on glucose homeostasis. For example, GH oversecretion induces insulin resistance and increases the risk of developing diabetes mellitus. Here, we show that GH receptor (GHR) ablation in vesicular glutamate transporter 2 (VGLUT2)-expressing cells, which comprise a subgroup of glutamatergic neurons, led to a slight decrease in lean body mass without inducing changes in body adiposity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!