Identification and expression analysis of regulatory genes induced during conidiation in Exserohilum turcicum.

Fungal Genet Biol

United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-2054, USA.

Published: May 2005

Light influences numerous developmental and biochemical processes in fungi. The objectives of this research were to characterize the influence of light on growth and conidiation and associated gene expression in the plant pathogenic ascomycete, Exserohilum turcicum. We found that vegetative growth was more extensive in light/dark cycles than in constant light or darkness as measured by analysis of ergosterol content and genomic DNA. Cultures grown under continuous white light or blue light (approximately 465-480 nm) were developmentally arrested after the formation of conidiophores, whereas those grown in continuous darkness or a light/dark cycle produced mature conidia. Incubation of conidiophore-producing cultures in darkness for a minimum of 2 h was necessary and sufficient to initiate synchronous conidiation. To identify genes that are expressed during dark-induced conidiation, we constructed subtractive cDNA libraries from cultures grown under conidiation-permissive and -repressive conditions. From 816 sequenced EST clones in the conidiation-permissive and 310 in the repressive libraries, 12 putative regulatory genes were chosen for expression analysis by quantitative real-time PCR. The majority of those genes reached maximum expression by 2 h after initiation of the dark period and then declined to initial levels by 4-24 h in darkness. Expression of two dark-induced genes remained elevated after 24 h in darkness but was reset to initial levels if cultures were returned to light. This study revealed several genes whose expression increased rapidly after dark induction of conidiation, suggesting that they encode regulators of asexual development in E. turcicum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2005.02.001DOI Listing

Publication Analysis

Top Keywords

expression analysis
8
regulatory genes
8
exserohilum turcicum
8
cultures grown
8
grown continuous
8
initial levels
8
genes
6
light
6
conidiation
5
expression
5

Similar Publications

Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley.

View Article and Find Full Text PDF

Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants.

Plant Cell Rep

January 2025

MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.

The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.

View Article and Find Full Text PDF

This study aims to investigate the expression of seven cancer testis antigens (MAGE-A1, MAGE-A4, MAGE-A10, MAGE-A11, PRAME, NY-ESO-1 and KK-LC-1) in pan squamous cell carcinoma and their prognostic value, thus assessing the potential of these CTAs as immunotherapeutic targets. The protein expression of these CTAs was evaluated by immunohistochemistry in 60 lung squamous cell carcinoma (LUSC), 62 esophageal squamous cell carcinoma (ESCA) and 62 head and neck squamous cell carcinoma (HNSC). The relationship between CTAs expression and progression-free survival (PFS) was assessed.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!