Neural correlates of olfactory change detection.

Neuroimage

Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

Published: April 2005

Detecting changes in a stream of sensory information is vital to animals and humans. While there have been several studies of automatic change detection in various sensory modalities, olfactory change detection is largely unstudied. We investigated brain regions responsive to both passive and active detection of olfactory change using fMRI. Nine right-handed healthy, normosmic subjects (five men) were scanned in two conditions while breathing in synchrony with a metronome. In one condition, subjects mentally counted infrequent odors (Attend condition), whereas in the other condition, subjects' attention was directed elsewhere as they counted auditory tones (Ignore condition). Odors were delivered via a nasal cannula using a computer-controlled air-dilution olfactometer. Infrequently occurring olfactory stimuli evoked significant (P < .05, corrected) activity in the subgenual cingulate and in central posterior orbitofrontal cortex, but only in the Ignore condition, as confirmed by direct comparison of the Ignore session with the Attend session (P < .05, corrected). Subgenual cingulate and posterior orbital cortex may therefore play a role in detecting discrepant olfactory events while attention is otherwise engaged in another sensory modality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2004.12.033DOI Listing

Publication Analysis

Top Keywords

olfactory change
12
change detection
12
ignore condition
8
subgenual cingulate
8
olfactory
5
condition
5
neural correlates
4
correlates olfactory
4
change
4
detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!