Cryptic 5' splice site activation in SCN5A associated with Brugada syndrome.

J Mol Cell Cardiol

Molecular Genetics, Masonic Medical Research Laboratory, 2150 Bleecker Street, Utica, NY 13501, USA.

Published: April 2005

The Brugada syndrome (BS) is characterized by ST segment elevation in the right precordial leads and sudden cardiac death. The disease is linked to mutations in SCN5A in approximately 20% of cases. We collected a large family with BS and have identified a novel intronic mutation. We performed the clinical, genetic, molecular and biophysical characterization of this disease-causing mutation. With direct sequencing we identified an intronic insertion of TGGG 5 bp from the end of the Exon 27 of SCN5A. For transcript analysis, we investigated Epstein-Barr-transformed lymphoblastoid cell lines from patients and controls. Total RNA was extracted and RT-PCR experiments were performed to analyze the splicing patterns in exon 27 and 28. We identified two bands, one of the expected size and the other which showed a 96 bp deletion in exon 27, leading to a 32 amino acid in-frame deletion involving segments 2 and 3 of Domain IV of the SCN5A protein. This finding indicates that the intronic mutation creates a cryptic splice site inside Exon 27. Biophysical analysis using whole-cell patch-clamp techniques showed a complete loss of function of the mutated channels when heterologously expressed. In summary, this is the first report of a dysfunctional sodium channel created by an intronic mutation giving rise to cryptic splice site activation in SCN5A in a family with the BS. The deletion of fragments of segments 2 and 3 of Domain IV leads to complete loss of function, consistent with the biophysical data found in several mutations causing BS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2004.10.015DOI Listing

Publication Analysis

Top Keywords

cryptic splice
12
splice site
12
intronic mutation
12
site activation
8
activation scn5a
8
brugada syndrome
8
segments domain
8
complete loss
8
loss function
8
scn5a
5

Similar Publications

EHMT2 as a Candidate Gene for an Autosomal Recessive Neurodevelopmental Syndrome.

Mol Neurobiol

December 2024

Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.

Neurodevelopmental disorders (NDD) comprise clinical conditions with high genetic heterogeneity and a notable enrichment of genes involved in regulating chromatin structure and function. The EHMT1/2 epigenetic complex plays a crucial role in repression of gene transcription in a highly tissue- and temporal-specific manner. Mutations resulting in heterozygous loss-of-function (LoF) of EHMT1 are implicated in Kleefstra syndrome 1 (KS1).

View Article and Find Full Text PDF

Alternative splicing enhances protein diversity in different ways, including through exonization of transposable elements (TEs). Recent transcriptomic analyses identified thousands of unannotated spliced transcripts with exonizing TEs, but their contribution to the proteome and biological relevance remains unclear. Here, we use transcriptome assembly, ribosome profiling, and proteomics to describe a population of 1,227 unannotated TE exonizing isoforms generated by mRNA splicing and recurrent in human populations.

View Article and Find Full Text PDF

During transcription, RNA polymerase II traverses through chromatin, and post-translational modifications including histone methylations mark regions of active transcription. Histone protein H3 lysine 36 trimethylation (H3K36me3), which is established by the histone methyltransferase SETD2, suppresses cryptic transcription, regulates splicing, and serves as a binding site for transcription elongation factors. The mechanism by which the transcription machinery coordinates the deposition of H3K36me3 is not well understood.

View Article and Find Full Text PDF

Eukaryotic cells express a large number of transcripts from a single gene due to alternative splicing. Despite hundreds of thousands of splice isoforms being annotated in databases, it has been reported that the current exon catalogs remain incomplete. At the same time, introns of human protein-coding (PC) genes contain a large number of evolutionarily conserved elements with unknown function.

View Article and Find Full Text PDF

Congenital disorder of glycosylation type Iy (CDG-Iy) is an X-linked monogenic inherited disease caused by variants in the SSR4 gene. To date, a total of 11 variants have been identified in 14 CDG-Iy patients. Our study identified a novel canonical splicing variant, c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!