The estrogen receptor (ER) gene has been considered as a candidate genetic marker for osteoporosis, and PvuII and XbaI polymorphisms of the ERalpha gene have been associated with low bone mineral density (BMD). We investigated whether ER polymorphism could predict the response of BMD in 28 postmenopausal women on hemodialysis with marked osteopenia or osteoporosis, randomized to receive raloxifene, a selective estrogen receptor modulator (SERM), or placebo for 1 year. BMD was assessed by dual X-ray absorptiometry and PvuII and XbaI restriction fragment-length polymorphism of the ER gene was determined using polymerase chain reaction. Baseline lumbar spine or femoral neck BMD parameters were not different between patients presenting either homozygous PP or xx when compared with heterozygous Pp or Xx genotypes. After 1 year, patients on raloxifene, presenting with PP or xx genotypes (but not those with Pp or Xx), showed a significantly higher mean lumbar spine BMD (0.942 +/- 0.18 vs. 0.925 +/- 0.17 g/cm2, p < .01) and lower serum pyridinoline (19.7 +/- 9.7 vs. 30.6 +/- 16.5 nmol/L, p < .02) when compared with baseline values. No changes were detected in the placebo-treated patients or in the femur neck sites. In conclusion, after 1 year on raloxifene, postmenopausal osteoporotic women on chronic hemodialysis, homozygous for the P or x (PP or xx) alleles of the ER, exhibited a better lumbar spine BMD response and decreased serum pyridinoline values when compared with heterozygous women (Pp or Xx), suggesting that ERalpha allelic variants may explain, at least in part, the different outcomes after treatment of osteoporosis with SERM.

Download full-text PDF

Source

Publication Analysis

Top Keywords

estrogen receptor
12
lumbar spine
12
receptor gene
8
polymorphism predict
8
bone mineral
8
mineral density
8
raloxifene postmenopausal
8
postmenopausal women
8
women chronic
8
chronic hemodialysis
8

Similar Publications

The oncoprotein c-Myc is expressed in all breast cancer subtypes, but its expression is higher in triple-negative breast cancer (TNBC) compared to estrogen receptor (ER+), progesterone receptor (PR+), or human epidermal growth factor receptor 2 (HER2+) positive tumors. The c-Myc gene is crucial for tumor progression and therapy resistance, impacting cell proliferation, differentiation, senescence, angiogenesis, immune evasion, metabolism, invasion, autophagy, apoptosis, chromosomal instability, and protein biosynthesis. Targeting c-Myc has emerged as a potential therapeutic strategy for TNBC, a highly aggressive and deadly breast cancer form.

View Article and Find Full Text PDF

The potential endocrine-disrupting of fluorinated pesticides and molecular mechanism of EDPs in cell models.

Ecotoxicol Environ Saf

January 2025

State Key Lab, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China. Electronic address:

Environmental endocrine disruptors constitute a category of exogenous compounds that interfere with the endocrine system's functions in organisms or cells. As a class of particularly representative endocrine-disrupting chemicals, the accumulation of per- and polyfluoroalkyl substances potentially leads to adverse health effects, including hormonal disruptions, developmental issues, and cancer. However, the classification of these disruptors is intricate, and the data on their potential health risks is scattered.

View Article and Find Full Text PDF

Breast cancer (BC) commonly expresses estrogen receptors (ERs); hence, endocrine therapy targeting ERs is considered an effective treatment. Tamoxifen (TAM) resistance is an essential clinical complication leading to cancer progression and metastasis. This study investigated MicroRNAs (miRNAs) potentially implicated in drug resistance (miR-182-3p, miR-382-3p) or sensitivity (miR-93, miR- 142- 3p).

View Article and Find Full Text PDF

Zoledronic acid (ZA), a bisphosphonate, is commonly used in breast cancer patients with bone metastases to treat hypercalcemia and osteolysis. Recent studies showed the anti-cancer effects of ZA in breast cancer. This study further explored the synergistic effects of sequential and nonsequential ZA and doxorubicin (DOX) administration on estrogen receptor (ER)-positive and -negative breast cancer cell lines.

View Article and Find Full Text PDF

Plasma cell-free DNA (cfDNA) analysis to track estrogen receptor 1 (ESR1) mutations is highly beneficial for the identification of tumor molecular dynamics and the improvement of personalized treatments for patients with metastatic breast cancer (MBC). Plasma-cfDNA is, up to now, the most frequent liquid biopsy analyte used to evaluate ESR1 mutational status. Circulating tumor cell (CTC) enumeration and molecular characterization analysis provides important clinical information in patients with MBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!