A new method for sanitation based on the photodynamic effect is introduced. Photosensitisers are compounds that generate cytotoxic oxygen species and free radicals after excitation with appropriate visible light. The cell killing efficacy is due to their chemical structure, to the actual environment and therefore also to their degree of aggregation. As has been shown, photosensitisers bound to the cell wall or incorporated into the cells are very effective cytotoxic agents after illumination. Even singlet oxygen generated in the gas phase surrounding the micro-organisms effectively kills cells. Especially membrane components are the targets of the photodynamic effect. Membrane disintegration is observed soon after illumination. The food contaminants under investigation are Bacillus subtilis, Bacillus cereus, forming endospores, Staphylococcus aureus, forming a wide range of agressins, exotoxins and enterotoxins, all gram positive micro-organisms, Escherichia coli, a hygiene indicator, and the yeasts Saccharomyces cerevisiae, Kloeckera javanica, Rhodotorula mucilaginosa, a blue and a pink pigmented isolate from foods. We investigated the capacity of several photosensitisers to induce the phototoxic effect towards those micro-organisms following excitation by visible light.
Download full-text PDF |
Source |
---|
Hum Brain Mapp
January 2025
Department of Psychology, Concordia University, Montreal, Quebec, Canada.
The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
MXenes, have been considered as a new generation anode material in lithium-ion batteries for lower lithium-ion diffusion barriers and superior conductivity. Unfortunately, their structures are prone to aggregation and stacking, hindering further shuttle of lithium ions and electrons, resulting in lower discharge capacity. Therefore, the introduction of interlayer spacers for the preparation of MXene-based hybrids has attracted much attention.
View Article and Find Full Text PDFSmall
January 2025
Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China.
Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect.
View Article and Find Full Text PDFSmall
January 2025
Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, P. R. China.
Topical transdermal drug delivery for psoriasis remains a challenge because of the poor solubility of hydrophobic drugs and the limited penetration of the stratum corneum. In this study, a near-infrared (NIR) light-responsive thermosensitive hydrogel (PDLLA-PEG-PDLLA, PLEL)-based drug reservoir is developed that directly incorporated gold nanorods (GNRs) and methotrexate (MTX) in the sol state at low temperature, which is referred to as PLEL@GNR+MTX. The in vitro anti-psoriasis experiment indicated that, GNRs, as photothermal cores of composite hydrogel, not only triggered keratinocyte apoptosis but also promoted MTX release in a synergistic manner.
View Article and Find Full Text PDFYi Chuan
January 2025
Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
Being the most magnificent plateau in elevation and size on Earth, the Qinghai-Tibet Plateau has a profound impact on biodiversity due to the unique geographic and climatic conditions. Here we review the speciation patterns and genetic diversity of the birds from the Qinghai-Tibet Plateau in relation to the geological history and climatic changes. First, the uplift of the Qinghai-Tibet Plateau forms a geographic barrier and promotes interspecific and intraspecific genetic differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!