Objectives/hypothesis: Speech perception scores using cochlear implants have ranged widely in all published series. The underlying determinants of success in word recognition are incompletely defined. Although it has been assumed that residual spiral ganglion cell population in the deaf ear may play a critical role, published data from temporal bone specimens from patients have not supported this hypothesis. The depth of insertion of a multichannel cochlear implant has also been suggested as a clinical variable that may be correlated with word recognition. In the current study these correlations were evaluated in 15 human subjects.

Study Design: Retrospective review of temporal bone histopathology.

Methods: Temporal bones were fixed and prepared for histological study by standard techniques. Specimens were then serially sectioned and reconstructed by two-dimensional methods. The spiral ganglion cells were counted, and the depth of insertion of the cochlear implant as measured from the round window was determined. Correlation analyses were then performed between the NU6 word scores and spiral ganglion cell counts and the depth of insertion.

Results: The segmental and total spiral ganglion cell counts were not significantly correlated (P > .50) with NU6 word scores for the 15 subjects. Statistically significant correlations were not achieved by separate analysis of implant types. Similarly, no significant correlation between the depth of insertion of the electrode array and postoperative NU6 word score was identified for the group.

Conclusion: Although it is unlikely that the number of residual spiral ganglion cell counts is irrelevant to the determination of word recognition following cochlear implantation, there are, clearly, other clinical variables not yet identified that play an important role in determining success with cochlear implantation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.mlg.0000161335.62139.80DOI Listing

Publication Analysis

Top Keywords

spiral ganglion
24
word recognition
16
ganglion cell
16
depth insertion
12
nu6 word
12
cell counts
12
ganglion cells
8
residual spiral
8
temporal bone
8
cochlear implant
8

Similar Publications

Loss of Fascin2 increases susceptibility to cisplatin-induced hearing impairment and cochlear cell apoptosis in mice.

J Otol

July 2024

Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China.

Objectives: Deletion of gene in mice has been linked to progressive hearing loss and degeneration of cochlear cells. Cisplatin, an antitumor drug, can cause various side effects, including ototoxicity. The aim of this study was to investigate the effects of on cisplatin-induced hearing impairment in mice and to explore the possible mechanism.

View Article and Find Full Text PDF

The use of optogenetic tools offers an excellent method for spatially and temporally regulated gene and protein expression in cell therapeutic approaches. This could be useful as a concomitant therapeutic measure, especially in small body compartments such as the inner ear, for example, during cochlea implantation, to enhance neuronal cell survival and function. Here, we used the blue light activatable CRY2/CIB system to induce transcription of brain-derived neurotrophic factor (BDNF) in human cells.

View Article and Find Full Text PDF

To encode continuous sound stimuli, the inner hair cell (IHC) ribbon synapses utilize calcium-binding proteins (CaBPs), which reduce the inactivation of their Ca1.3 calcium channels. Mutations in the gene underlie non-syndromic autosomal recessive hearing loss DFNB93.

View Article and Find Full Text PDF

Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca channels.

View Article and Find Full Text PDF

Study on Recovery Strategy of Hearing Loss & SGN Regeneration Under Physical Regulation.

Adv Sci (Weinh)

December 2024

Department of Neurology, Aerospace Center Hospital, School of Life, Beijing Institute of Technology, Beijing, 100081, China.

The World Health Organization (WHO) reports that by 2050, nearly 2.5 billion people are expected to have some degree of hearing loss (HL) and at least 700 million will need hearing rehabilitation. Therefore, there is an urgent need to develop treatment strategies for HL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!