A protocol is described for rapid DNA isolation from marine biofilm microorganisms embedded in large amounts of exopolysaccharides. The method is a modification of the hot phenol protocol used for plants tissues, where nonexpensive and easily available enzymes were used. The method is based on the incubation of biofilm biomass samples in an extraction buffer mixed with phenol preheated at 65 degrees C. The procedure can be completed in 2 h and up to 20 samples can be processed simultaneously with ease and DNA of excellent quality, as shown by successfully amplification of polymerase chain reaction (PCR) products. DNA was recovered from a range of intertidal marine biofilms with varying amounts of exopolysaccharides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/MB:30:1:051 | DOI Listing |
Curr Microbiol
January 2025
Department of Nanotechnology Engineering, Abdullah Gul University, Kayseri, Türkiye.
Traditional Turkish fermented foods like boza, pickles, and tarhana are recognized for their nutritional and health benefits, yet the probiotic potential of lactic acid bacteria (LAB) strains isolated from them remains underexplored. Sixty-six LAB strains were isolated from fermented foods using bacterial morphology, Gram staining, and catalase activity. The isolates were differentiated at strain level by RAPD-PCR (Random Amplification of Polymorphic DNA-Polymerase Chain Reaction) and twenty-five strains were selected for further evaluation of acid and bile salt tolerance.
View Article and Find Full Text PDFHeliyon
July 2024
NHC Key Laboratory of Biotechnology of Antibiotics, CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
With the rapid development of immunotherapy in recent years, cytokine storm has been recognized as a common adverse effect of immunotherapy. The emergence of COVID-19 has renewed global attention to it. The cytokine storm's inflammatory response results in infiltration of large amounts of monocytes/macrophages in the lungs, heart, spleen, lymph nodes, and kidneys.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China. Electronic address:
Naunyn Schmiedebergs Arch Pharmacol
November 2024
Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India.
Exopolysaccharides (EPSs) are the group of biological macromolecules those play a potent role in protecting the bacteria from any sorts of stress. They exhibit multifunctional roles in natural and bioactive product science hence exhibits various types of medical and biochemical applications. EPS ensures the storage of nutrients, produce antigens to create defense mechanism during infection, and is also responsible for the formation of biofilm and cell adhesion.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
24 (BL24) is an efficient, non-pathogenic producer of 2,3-butanediol (2,3-BD). However, during inulin fermentation, the strain produces large amounts of exopolysaccharides (EPS), which interfere with the process' performance. The present study aims to investigate the effect that inactivation of the gene, encoding levansucrase in BL24, has on 2,3-BD production efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!