Background: Available therapeutic surfactants are either animal-derived or non-protein-containing synthetic products. Animal-derived surfactants contain variable amounts of surfactant apoproteins, whereas the older-generation synthetic products contain only phospholipids and lack surfactant proteins (SPs). Both decrease morbidity and mortality rates associated with respiratory distress syndrome (RDS) among preterm infants, compared with placebo. However, excess mortality rates have been observed with non-protein-containing synthetic surfactants, compared with the animal-derived products. Evidence suggests that synthetic surfactants consisting solely of phospholipids can be improved with the addition of peptides that are functional analogs of SPs. Lucinactant is a new synthetic peptide-containing surfactant that contains sinapultide, a novel, 21-amino acid peptide (leucine and lysine repeating units, KL4 peptide) designed to mimic human SP-B. It is completely devoid of animal-derived components.

Objective: We hypothesized that the outcomes for premature infants treated with lucinactant and poractant alfa would be similar. Therefore, we compared lucinactant (Surfaxin; Discovery Laboratories, Doylestown, PA) with porcine-derived, poractant alfa (Curosurf; Chiesi Farmaceutici, Parma, Italy) in a trial to test for noninferiority.

Methods: A total of 252 infants born between 24 and 28 weeks of completed gestation, with birth weights between 600 and 1250 g, were assigned randomly in a multicenter, multinational, noninferiority, randomized, controlled study to receive either lucinactant (n = 124) or poractant alfa (n = 128) within 30 minutes of life. The primary outcome was the incidence of being alive without bronchopulmonary dysplasia (BPD) through 28 days of age. Key secondary outcomes included death at day 28 and 36 weeks postmenstrual age (PMA), air leaks, neuroimaging abnormalities, and other complications related to either prematurity or RDS. An independent, international, data and safety monitoring committee monitored the trial.

Results: The treatment difference between lucinactant and poractant alfa for survival without BPD through 28 days was 4.75% (95% confidence interval [CI]: -7.3% to 16.8%) in favor of lucinactant, with the lower boundary of the 95% CI for the difference, ie, -7.3%, being greater than the prespecified noninferiority margin of -14.5%. At 28 days, 45 of 119 infants given lucinactant were alive without BPD (37.8%; 95% CI: 29.1-46.5%), compared with 41 of 124 given poractant alfa (33.1%; 95% CI: 24.8-41.3%); at 36 weeks PMA, the rates were 64.7% and 66.9%, respectively. The corresponding mortality rate through day 28 for the lucinactant group was lower than that for the poractant alfa group (11.8% [95% CI: 6.0-17.6%] vs 16.1% [95% CI: 9.7-22.6%]), as was the rate at 36 weeks PMA (16% and 18.5%, respectively). There were no differences in major dosing complications. In addition, no significant differences were observed in the incidences of common complications of prematurity, including intraventricular hemorrhage (grades 3 and 4) and cystic periventricular leukomalacia (lucinactant: 14.3%; poractant alfa: 16.9%).

Conclusions: Lucinactant and poractant alfa were similar in terms of efficacy and safety when used for the prevention and treatment of RDS among preterm infants. The ability to enhance the performance of a synthetic surfactant with the addition of a peptide that mimics the action of SP-B, such as sinapultide, brings potential advantages to exogenous surfactant therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1542/peds.2004-2231DOI Listing

Publication Analysis

Top Keywords

poractant alfa
36
lucinactant poractant
12
lucinactant
11
poractant
9
alfa
9
randomized controlled
8
premature infants
8
respiratory distress
8
distress syndrome
8
non-protein-containing synthetic
8

Similar Publications

Objective: To evaluate the incidence of thin catheter surfactant administration (TCA) failure and compare short and long-term neonatal outcomes who failed TCA or did not.

Design: Single-center retrospective cohort study. Infants between 25 and 30 weeks of gestational age with respiratory distress syndrome and receiving 200 mg/kg poractant alfa via thin catheter administration were included.

View Article and Find Full Text PDF

Introduction Respiratory distress syndrome (RDS) is a leading cause of morbidity and mortality among preterm infants, necessitating effective treatment strategies. This study compared the efficacy of Beractant (SURVANTA®) to Poractant alfa (CUROSURF®) in treating RDS in preterm infants admitted to Tawam Hospital in the UAE. Methodology This retrospective study included preterm infants from 23+0 to 36+6 weeks of gestation with a diagnosis of RDS and treatment by Beractant or Poractant alfa within 48 hours of life between January 2020 and March 2023.

View Article and Find Full Text PDF
Article Synopsis
  • Bronchopulmonary dysplasia (BPD) is a serious condition affecting extremely preterm infants, and while systemic corticosteroids can help, they come with risks; inhaled corticosteroids may provide a safer alternative.
  • The study aimed to assess the effectiveness of administering budesonide, an inhaled corticosteroid, alongside surfactant in improving survival rates without BPD among extremely preterm infants.
  • Conducted across 21 neonatal units in four countries, the trial involved 1,059 infants and found that 25.6% of those receiving budesonide plus surfactant survived without BPD, compared to 22.6% in the surfactant-only group.
View Article and Find Full Text PDF

Behavior of Microbubbles on Air-Aqueous Interfaces.

Langmuir

November 2024

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7LD, U.K.

Animal-derived lung surfactants have saved millions of lives of preterm neonates with neonatal Respiratory Distress Syndrome (nRDS). However, a replacement for animal-derived lung surfactants has been sought for decades due to its high manufacturing cost, inaccessibility in low-income countries, and failure to show efficacy when nebulized. This study investigated the use of lipid-coated microbubbles as potential replacements for exogenous lung surfactants.

View Article and Find Full Text PDF

Comparative biophysical study of clinical surfactants using constrained drop surfactometry.

Am J Physiol Lung Cell Mol Physiol

October 2024

Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States.

Surfactant replacement therapy is crucial in managing neonatal respiratory distress syndrome (RDS). Currently licensed clinical surfactants in the United States and Europe, including Survanta, Infasurf, Curosurf, and Alveofact, are all derived from bovine or porcine sources. We conducted a comprehensive examination of the biophysical properties of these four clinical surfactant preparations under physiologically relevant conditions, using constrained drop surfactometry (CDS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!