Steroid-resistant inflammation in a rat model of chronic obstructive pulmonary disease is associated with a lack of nuclear factor-kappaB pathway activation.

Am J Respir Crit Care Med

Respiratory Pharmacology Group, Faculty of Medicine, National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK.

Published: July 2005

Rationale: Emphysema is one component of chronic obstructive pulmonary disease (COPD), a respiratory disease currently increasing in prevalence worldwide. The mainstay therapy adopted to treat patients with COPD is glucocorticoids; unfortunately, this treatment has limited impact on disease symptoms or underlying airway inflammation.

Objective: There is an urgent need to develop therapies that modify both the underlying inflammation, thought to be involved in disease progression, and the structural changes in the emphysematous lung.

Methods: We have characterized an elastase-driven model of experimental emphysema in the rat that demonstrates COPD-like airway inflammation and determined the impact of a clinically relevant glucocorticoid.

Measurements And Main Results: We observed an increase in lung neutrophils, lymphomononuclear cells, mucus production, and inflammatory cytokines. Also present were increases in average air space area, which are associated with emphysema-like changes in lung function, such as increased residual volume and decreased flow; these increases in area were maintained for up to 10 weeks. In addition, we observed that elastase-induced airway neutrophilia is steroid resistant. Interestingly, the inflammation observed after elastase administration was found to be temporally associated with a lack of nuclear factor-kappaB pathway activation. This apparent nuclear factor-kappaB-independent inflammation may explain why treatment with a glucocorticoid was ineffective in this preclinical model and could suggest parallels in the steroid-resistant human disease.

Conclusion: We believe that this model, in addition to its suitability for testing therapies that may modify existing emphysema, could be useful in the search for new therapies to reduce the steroid-resistant airway inflammation evident in COPD.

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.200409-1257OCDOI Listing

Publication Analysis

Top Keywords

chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
associated lack
8
lack nuclear
8
nuclear factor-kappab
8
factor-kappab pathway
8
pathway activation
8
therapies modify
8
airway inflammation
8

Similar Publications

Background: Nasal high flow (NHF) has been proposed to sustain high intensity exercise in people with COPD, but we have a poor understanding of its physiological effects in this clinical setting.

Research Question: What is the effect of NHF during exercise on dynamic respiratory muscle function and activation, cardiorespiratory parameters, endurance capacity, dyspnoea and leg fatigue as compared to control intervention.

Study Design And Methods: Randomized single-blind crossover trial including COPD patients.

View Article and Find Full Text PDF

Increased plasma interleukin-1β is associated with accelerated lung function decline in non-smokers.

Pulmonology

December 2025

State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory Medicine & Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.

Interleukin-1β is one of the major cytokines involved in the initiation and persistence of airway inflammation in chronic obstructive pulmonary disease (COPD). However, the association between plasma interleukin-1β and lung function decline remains unclear. We aimed to explore the association between plasma interleukin-1β and lung function decline.

View Article and Find Full Text PDF

Nasal high flow (NHF) therapy is an established form of non invasive respiratory support used in acute and chronic care. Recently, a new high flow nasal cannula with asymmetric prongs was approved for clinical use. The clinical benefits of the new cannula have not yet been defined and no evidence are available on the use of asymmetric NHF support in patient with Chronic Obstructive Pulmonary Disease (COPD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!