Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1749-6632.1992.tb49596.x | DOI Listing |
Alzheimers Dement
December 2024
Columbia University Irving Medical Center, New York, NY, USA.
Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of Texas Health Science Center at Houston, Houston, TX, USA.
Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.
Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.
Alzheimers Dement
December 2024
Beckman Research Institute of City of Hope, Duarte, CA, USA.
Background: Brain organoid models were generated from healthy control or Alzheimer's disease patient iPSCs to facilitate our understanding of AD pathogenesis.
Method: ApoE3 and ApoE4 iPSCs were developed into brain organoids using our recently developed brain organoid platform that allows prolonged culture of brain organoids. Human iPSCs were also differentiated into microglia, which were then co-cultured with brain organoids.
Alzheimers Dement
December 2024
Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
Background: Alzheimer disease (AD) is a progressive neurodegenerative disease that is accountable for the leading case of dementia in elder people. Before, only symptomatic treatments are available for AD. Since 2021, two anti-amyloid antibodies aducanumab and lecanemab have been approved by the US Food and Drug Administration.
View Article and Find Full Text PDFBackground: Human pluripotent stem cell (hPSC)-derived brain organoids patterned towards the cerebral cortex are valuable models of interactions occurring in vivo in cortical tissue. We and others have used these cortical organoids to model dominantly inherited FTD-tau. While these studies have provided essential insights, cortical organoid models have yet to reach their full potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!