The effect of diphenyl diselenide, (PhSe)2, administration on 2-nitropropane (2-NP)-induced hepatic damage was examined in male rats. Rats were pre-treated with a single dose of diphenyl diselenide (10, 50 or 100 micromol/kg). Afterward, they received only one dose of 2-NP (100 mg/kg body weight dissolved in olive oil). The parameters that indicate tissue damage such as plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), alpha-fetoprotein (AFP), creatinine and urea were determined. Since toxicity induced by 2-NP is related to oxidative stress, lipid peroxidation was also evaluated. Diphenyl diselenide (100 micromol/kg) significantly reduced plasma ALT, gamma-GGT, AFP levels when compared to 2-NP group. Treatment with diphenyl diselenide, at all doses, effectively protects the increase of lipid peroxidation when compared to 2-NP group. Histological examination revealed that 2-NP treatment causes a moderate swelling and degenerative alterations on hepatocytes and diphenyl diselenide (100 micromol/kg) protects against these alterations. Diphenyl diselenide (50 and 100 micromol/kg) significantly decreased the urea level. This study evidences the protective effect of diphenyl diselenide by 2-NP-induced acute hepatic damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2005.01.002 | DOI Listing |
Org Lett
January 2025
School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China.
The translocation of an aryl group from selenium into carbon enabled by the cleavage of the C-Se bond is reported by using nitrogen atom-linked 1,7-diynes and diaryl diselenides as starting materials, leading to various selenophene derivatives in a regioselective manner. This method enables the construction of two C-Se bonds and two C-C bonds through sequential radical bicyclization and 1,2-aryl migration under metal-free conditions. Control experiments and mechanistic studies suggest that this reaction proceeds through the cleavage of the inert C(Ph)-Se bond, facilitating the aryl translocation process.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2024
Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil. Electronic address:
Amphetamine (AMPH) abuse represents a major global public health issue, highlighting the urgent need for effective therapeutic interventions to manage addiction caused by this psychostimulant. This study aimed to assess the potential of m-trifluoromethyl-diphenyldiselenide [(m-CF-PhSe)] in preventing the addictive effects induced by AMPH through targeting dopamine metabolism proteins. (m-CF-PhSe) is of interest due to its demonstrated efficacy in mitigating opioid abuse, establishing it as a promising candidate for addiction treatment research.
View Article and Find Full Text PDFBMC Neurosci
December 2024
Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria.
Diethylnitrosamine (DEN), a common dietary carcinogen, is associated with neurotoxicity in humans and animals. This study investigated the neuroprotective effects of diphenyl diselenide (DPDS) against DEN-induced neurotoxicity in male Albino Wistar rats (n = 40). Rats were randomly distributed into cohorts and treated as follows: vehicle control (corn oil 2 mL/kg; gavage), DPDS-only (5 mg/kg; gavage) and DEN-only (200 mg/kg; single dose i.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Pharmacology, School of Pharmacy, North Sichuan Medical College, Nanchong, China.
Introduction: Diphenyl diselenide (DPDS) ameliorates nephropathy in streptozotocin (STZ)-induced type 1 diabetic rats by inhibiting oxidative stress and inflammatory reactions. However, it has not been clarified whether DPDS alleviates type 1 diabetic kidney disease (DKD) is related to the inhibition of extracellular matrix (ECM) production and the regulation of intestinal flora disorder.
Methods: The present study investigated the effects of DPDS on ECM generation in the kidney and intestinal microflora composition in feces.
Chem Asian J
December 2024
Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!