The hypothalamic arcuate nucleus (Arc) and its neurons expressing agouti-related protein (AgRP) are key components of the forebrain circuitry involved in long-term regulation of energy homeostasis, including conveying leptin signaling to other hypothalamic and extrahypothalamic regions. In the present work, we investigated the postnatal development (P0, P5, P10, P15, and P21) of this system (AgRP transcript and peptide) in the mouse brain using in situ hybridization and immunohistochemistry. At all stages, AgRP mRNA expression was detected exclusively in the Arc. At P0, AgRP mRNA levels were low, and only a few AgRP-immunoreactive fibers were present reaching, rostrally, the bed nucleus of the stria terminalis and, caudally, the dorsal raphe nucleus. During the following period (P5-P21), the levels of AgRP mRNA gradually increased in the Arc along with a parallel increase in the AgRP fiber density in the hypothalamic regions responsible for control of appetite, including the paraventricular nucleus, as well as in extrahypothalamic regions, including locus coeruleus. These data provide evidence that, in the mouse, the maturation of the AgRP Arc system occurs mainly during the first three postnatal weeks. Together with the existing data on the physiology of appetite and body weight, our data suggest that the first three postnatal weeks in the mouse represents a critical period for the formation of brain mechanisms underlying appetite control via peripheral hormones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.devbrainres.2005.01.009 | DOI Listing |
Endocrinology
January 2025
Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden.
Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor (GHSR), promotes food intake, other feeding behaviours and stimulates growth hormone (GH) release from the pituitary. Growth hormone secretagogues (GHS), such as GHRP-6 and MK-0677, are synthetic GHSR ligands that activate orexigenic Neuropeptide Y neurons that co-express Agouti-Related Peptide (AgRP) in the arcuate nucleus of the hypothalamus when administered systemically. Systemic GHRP-6 also stimulates GH release in humans and rats.
View Article and Find Full Text PDFMol Metab
January 2025
Center for Hypothalamic Research and Department of Internal medicine, UT Southwestern Medical Center, Dallas, TX, USA. Electronic address:
Agouti-related peptide (AgRP) is a well-established potent orexigenic peptide primarily expressed in hypothalamic neurons. Nevertheless, the expression and functional significance of extrahypothalamic AgRP remain poorly understood. In this study, utilizing histological and molecular biology techniques, we have identified a significant expression of Agrp mRNA and AgRP peptide production in glomus type I cells within the mouse carotid body (CB).
View Article and Find Full Text PDFNutrients
December 2024
College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
Irregular illumination is a newly discovered ambient factor that affects dietary and metabolic processes. However, the effect of the modulation of long-term light exposure on appetite and metabolism remains elusive. Therefore, in this current study, we systematically investigated the effects of up to 8 weeks of exposure to red (RL), green (GL), and white light (WL) environments on appetite, food preferences, and glucose homeostasis in mice on both high-fat and low-fat dietary patterns.
View Article and Find Full Text PDFGene
February 2025
Departments of Physiology, University of Toronto, Ontario, Canada; Departments of Medicine, University of Toronto, Ontario, Canada. Electronic address:
Obesity is a complex disease marked by increased adiposity and impaired metabolic function. While diet and lifestyle are primary causes, endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), significantly contribute to obesity. BPA, found in plastic consumer products, accumulates in the hypothalamus and dysregulates energy homeostasis by disrupting the neuropeptide Y (NPY)/agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) neurons.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2024
State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266373, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!