Giardia lamblia: evaluation of the in vitro effects of nocodazole and colchicine on trophozoites.

Exp Parasitol

Programa de Ciências Morfológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Published: May 2005

Giardia lamblia is the most commonly detected parasite in the intestinal tract of humans and other mammals causing giardiasis. Giardia presents several cytoskeletal structures with microtubules as major components such as the ventral adhesive disk, eight flagella axonemes, the median body and funis. Many drugs have already been tested as antigiardial agents, such as albendazole and mebendazole, which act by specifically inhibiting tubulin polymerization and hence microtubule assembly. In the present work, we used the microtubule inhibitors nocodazole and colchicine in order to investigate their direct and indirect effects on Giardia ultrastructure and attachment to the glass surface, respectively. Axenically grown G. lamblia trophozoites were treated with nocodazole or colchicine for different time intervals and analyzed by light and electron microscopy. It was observed that trophozoites became completely misshapen, detached from the glass surface and failed to complete cell division. The main alterations observed included disc fragmentation, presence of large vacuoles, and appearance of electrondense deposits made of tubulin. The cytokinesis was blocked, but not the karyokinesis, and membrane blebs were observed. These findings show that Giardia behavior and cytoskeleton are clearly affected by the commonly used microtubule targetting agents colchicine and nozodazole.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exppara.2005.01.007DOI Listing

Publication Analysis

Top Keywords

nocodazole colchicine
12
giardia lamblia
8
glass surface
8
giardia
5
lamblia evaluation
4
evaluation vitro
4
vitro effects
4
effects nocodazole
4
colchicine
4
colchicine trophozoites
4

Similar Publications

Tubulin plays a central role in mitosis and has been the target of multiple anticancer drugs, including paclitaxel. Herein two separate families of 2,3-dihydroquinazoline-4(1)-ones and quinazoline-4(3) ones, comprising 57 compounds in total, were synthesised. Screening against a broad panel of human cancer cell lines (HT29 colon, U87 and SJ-G2 glioblastoma, MCF-7 breast, A2780 ovarian, H460 lung, A431 skin, Du145 prostate, BE2-C neuroblastoma, and MIA pancreas) reveals these analogues to be broad spectrum cytotoxic compounds.

View Article and Find Full Text PDF

The microtubule cytoskeleton: A validated target for the development of 2-Aryl-1H-benzo[d]imidazole derivatives as potential anticancer agents.

Biomed Pharmacother

February 2024

Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea. Electronic address:

In this study, a series of 2-Aryl-1H-benzo[d]imidazole derivatives were developed to target intra- and extracellular microtubule networks. Compounds O-7 and O-10 showed impressive anti-proliferative activity across various tested cell lines, demonstrating selectivity indexes of 151.7 and 61.

View Article and Find Full Text PDF

Molecular Dynamics and Machine Learning reveal distinguishing mechanisms of Competitive Ligands to perturb α,β-Tubulin.

Comput Biol Chem

February 2024

Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, India. Electronic address:

The mechanisms of action of ligands competing for the Colchicine Binding Site (CBS) of the α,β-Tubulin are non-standard compared to the commonly witnessed ligand-induced inhibition of proteins. This is because their potencies are not solely judged by the binding affinity itself, but also by their capacity to bias the conformational states of the dimer. Regarding the latter requirement, it is observed that ligands competing for the same pocket that binds colchicine exhibit divergence in potential clinical outcomes.

View Article and Find Full Text PDF

Carbendazim derivatives, commonly used as antiparasitic drugs, have shown potential as anticancer agents due to their ability to induce cell cycle arrest and apoptosis in human cancer cells by inhibiting tubulin polymerization. Crystallographic structures of α/β-tubulin multimers complexed with nocodazole and mebendazole, two carbendazim derivatives with potent anticancer activity, highlighted the possibility of designing compounds that occupy both benzimidazole- and colchicine-binding sites. In addition, previous studies have demonstrated that the incorporation of a phenoxy group at position 5/6 of carbendazim increases the antiproliferative activity in cancer cell lines.

View Article and Find Full Text PDF

2-Methoxyestradiol as an Antiproliferative Agent for Long-Term Estrogen-Deprived Breast Cancer Cells.

Curr Issues Mol Biol

September 2023

Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzou 1, Gakuen-cho, Fukuyama-shi 729-0292, Hiroshima, Japan.

To identify effective treatment modalities for breast cancer with acquired resistance, we first compared the responsiveness of estrogen receptor-positive breast cancer MCF-7 cells and long-term estrogen-deprived (LTED) cells (a cell model of endocrine therapy-resistant breast cancer) derived from MCF-7 cells to G-1 and 2-methoxyestradiol (2-MeO-E2), which are microtubule-destabilizing agents and agonists of the G protein-coupled estrogen receptor 1 (GPER1). The expression of GPER1 in LTED cells was low (~0.44-fold), and LTED cells displayed approximately 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!