An attempt was made to produce carrier particles for dry powder inhalation with lactose carrier particles surface-coated using a Wurster fluidized bed. The lactose carrier particles were coated with lactose aqueous solution containing hydroxypropyl methyl cellulose (HPMC) as a binder using a Wurster coating apparatus. Drug/carrier powder mixtures were prepared consisting of micronized salbutamol sulfate and lactose carriers under various particle surface conditions. These powder mixtures were aerosolized by a Jethaler((R)), and the in vitro deposition properties of salbutamol sulfate were evaluated by a twin impinger. The in vitro inhalation properties of the powder mixture prepared using the coated lactose carrier differed significantly compared with those of the powder mixture prepared using the uncoated lactose carrier, indicating improvements in in vitro inhalation properties of sulbutamol sulfate. In vitro inhalation properties increased with the surface coating time. This surface coating system would thus be valuable for increasing the in vitro inhalation properties of dry powder inhalation with lactose carrier particles.

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.53.431DOI Listing

Publication Analysis

Top Keywords

lactose carrier
24
carrier particles
20
vitro inhalation
16
inhalation properties
16
dry powder
12
powder inhalation
12
inhalation lactose
12
lactose
8
particles surface-coated
8
surface-coated wurster
8

Similar Publications

/: Inhaler devices have been developed for the effective delivery of inhaled medications used in the treatment of pulmonary diseases. However, differing operating procedures across the devices can lead to user errors and reduce treatment efficacy, especially when patients use multiple devices simultaneously. To address this, we developed a novel dry powder inhaler (DPI), combining fluticasone propionate (FP), salmeterol xinafoate (SX), and tiotropium bromide (TB) into a single device designed for bioequivalent delivery compared to existing commercial products in an animal model.

View Article and Find Full Text PDF

Dry powder inhalers (DPI's) are becoming increasingly popular due to growing interest in pulmonary drug delivery and their performance is the net result of a series of processes carried out during the formulation development and manufacturing process such as excipient selection, blending, milling, filling, and spray drying. To reach the small airways of the deep lung, the active pharmaceutical ingredients (API) particles need to have an aerodynamic diameter of 1-5 μm to avoid impaction and particle sedimentation in the upper respiratory tract, and due to this small particle size, the powder becomes highly cohesive resulting in poor flow. Therefore, API is usually blended with a coarse carrier to improve flowability, and due to its large size, it is more fluidizable than the micronized drug.

View Article and Find Full Text PDF

In addition to the known therapeutic indications for cannabidiol, its administration by inhalation appears to be of great interest. Indeed, there is evidence of cannabidiol's efficacy in several physiological pathways, suggesting its potential for a wide range of applications for both local and systemic pulmonary administration like cancers. Significant advances in pulmonary drug delivery have led to innovative strategies to address the challenges of increasing the respirable fraction of drugs and standardizing inhalable products.

View Article and Find Full Text PDF

Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features.

View Article and Find Full Text PDF

Background: Spray drying, whilst a popularly employed technique for powder formulations, has limited applications for large-scale proliposome manufacture.

Objectives: Thus, the aim of this study was to investigate spray drying parameters, such as inlet temperature (80, 120, 160, and 200 °C), airflow rate (357, 473, and 601 L/h) and pump feed rate (5, 15, and 25%), for individual carbohydrate carriers (trehalose, lactose monohydrate (LMH), and mannitol) for 24 spray-dried (SD) formulations (F1-F24).

Methods: Following optimization, the SD parameters were trialed on proliposome formulations based on the same carriers and named as spray-dried proliposome (SDP) formulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!