Background: Pancreatic adenocarcinoma is a highly invasive neoplasm. Epidermal growth factor (EGF) and its receptor are over expressed in pancreatic cancer, and expression correlates with invasion and metastasis. We hypothesized that EGF receptor and integrin signalling pathways interact in mediating cellular adhesion and invasion in pancreatic cancer, and that invasiveness correlates temporally with detachment from extracellular matrix.
Methods: We tested this hypothesis by investigating the role of EGF in mediating adhesion to and invasion through collagen I and Matrigel in the metastatic pancreatic adenocarcinoma cell line Capan-1. Adhesion and invasion were measured using in vitro assays of fluorescently-labeled cells. Adhesion and invasion assays were also performed in the primary pancreatic adenocarcinoma cell line MIA PaCa-2.
Results: EGF inhibited adhesion to collagen I and Matrigel in Capan-1 cells. The loss of adhesion was reversed by AG825, an inhibitor of erbB2 receptor signalling and by wortmannin, a PI3K inhibitor, but not by the protein synthesis inhibitor cycloheximide. EGF stimulated invasion through collagen I and Matrigel at concentrations and time courses similar to those mediating detachment from these extracellular matrix components. Adhesion to collagen I was different in MIA PaCa-2 cells, with no significant change elicited following EGF treatment, whereas treatment with the EGF family member heregulin-alpha elicited a marked increase in adhesion. Invasion through Matrigel in response to EGF, however, was similar to that observed in Capan-1 cells.
Conclusion: An inverse relationship exists between adhesion and invasion capabilities in Capan-1 cells but not in MIA PaCa-2 cells. EGF receptor signalling involving the erbB2 and PI3K pathways plays a role in mediating these events in Capan-1 cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1079814 | PMC |
http://dx.doi.org/10.1186/1471-230X-5-12 | DOI Listing |
Biophys J
January 2025
Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany. Electronic address:
Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.
View Article and Find Full Text PDFZhonghua Fu Chan Ke Za Zhi
January 2025
Gynecological Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China.
To investigate the correlation between uterine volume and intrauterine adhesion (IUA). From June 2018 to November 2019, totally 7 007 patients who underwent hysteroscopy in outpatient operating rooms of Gynecological Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital were retrospectively analyzed Patients of reproductive age with IUA without uterine fibroids and adenomyosis were selected as IUA group, and patients of reproductive age without uterine fibroids and adenomyosis without IUA during the same period were selected as the control group. The propensity score matching (PSM) method was used to perform 1∶1 matching for the two groups of patients, matching variables included age, height, weight, body mass index (BMI), gravidity, parity, and number of abortion curettage.
View Article and Find Full Text PDFCells Dev
January 2025
Quantitative and Imaging Biology, International Research Collaboration Center (IRCC), National Institutes of Natural Sciences (NINS), Japan; Trans-Scale Biology Center, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences (NINS), Japan. Electronic address:
Collective cell migration is a fundamental process underlying various biological phenomena, including embryonic development and cancer cell invasion. The cohesive yet flexible movement of cell collectives largely depends on the coordinated regulation of cell-cell and cell-substrate adhesions. In this review, we summarize the regulation of key cell-cell junction components, such as cadherins and zonula occludens proteins during collective cell migration, with a particular focus on the recently discovered multifaceted roles of ZO-1 in both cell-cell and cell-substrate interactions.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201300, China.
The application of light-responsive nanomaterials (LRNs) in bone tissue engineering shows broad prospects, especially in promoting bone healing and regeneration. With a deeper understanding of the mechanisms of bone defects and healing disorders, LRNs are receiving increasing attention due to their non-invasive, controllable, and efficient properties. These materials can regulate cellular biological reactions and promote bone cell adhesion, proliferation, and differentiation by absorbing specific wavelengths of light and converting them into physical and chemical signals.
View Article and Find Full Text PDFPharmaceutics
January 2025
University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!