A novel class of 2-(R)-phenylpropionamides has been recently reported to inhibit in vitro and in vivo interleukin-8 (CXCL8)-induced biological activities. These CXCL8 inhibitors are derivatives of phenylpropionic nonsteroidal antiinflammatory drugs (NSAIDs), high-affinity ligands for site II of human serum albumin (HSA). Up to date, only a limited number of in silico models for the prediction of albumin protein binding are available. A three-dimensional quantitative structure-property relationship (3D-QSPR) approach was used to model the experimental affinity constant (K(i)) to plasma proteins of 37 structurally related molecules, using physicochemical and 3D-pharmacophoric descriptors. Molecular docking studies highlighted that training set molecules preferentially bind site II of HSA. The obtained model shows satisfactory statistical parameters both in fitting and predicting validation. External validation confirmed the statistical significance of the chemometric model, which is a powerful tool for the prediction of HSA binding in virtual libraries of structurally related compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm049227lDOI Listing

Publication Analysis

Top Keywords

human serum
8
serum albumin
8
cxcl8 inhibitors
8
3d-qspr approach
8
predicting human
4
albumin affinity
4
affinity interleukin-8
4
interleukin-8 cxcl8
4
inhibitors 3d-qspr
4
approach novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!