Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cyclical electrical field flow fractionation (Cy/ElFFF) is demonstrated in a standard electrical field flow fractionation (ElFFF) channel for the first time. Motivation for the use of alternating current (AC) fields in a traditionally direct current (DC) technique are discussed. The function of the system over a wide range of operating conditions is explored and challenges associated with various operating conditions reported. Retention of polystyrene nanoparticle standards is accomplished and the effect of varying parameters of the applied field, such as voltage and frequency, are explored. The first separations using this technique are demonstrated. The experimental results are compared to analytical models previously reported in the literature. The general trend of the experimental results is similar to those predicted in theoretical models and possible reasons for discrepancies are elucidated. Suggestions are made for improving the separation and analysis method, and possible applications explored.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.200410296 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!