In the present study, we have investigated gender differences in rat liver mitochondrial oxidative metabolism. Total mitochondrial population (M) as well as the heavy (M1), medium (M3), and light (M8) mitochondrial fractions obtained by means of differential centrifugation steps at 1,000, 3,000, and 8,000 g, respectively, were isolated. Electron microscopic analysis was performed and mitochondrial protein content and cardiolipin levels, mitochondrial O(2) flux, ATP synthase activity, mitochondrial membrane potential, and mitochondrial transcription factor A (TFAM) protein levels were measured in each sample. Our results indicate that mitochondria from females have higher protein content and higher cardiolipin levels, greater respiratory and phosphorylative capacities, and more-energized mitochondria in respiratory state 3. Moreover, protein levels of TFAM were four times greater in females than in males. Gender differences in the aforementioned parameters were more patent in the isolated heavy M1 and M3 mitochondrial fractions. The present study demonstrates that gender-related differences in liver mitochondrial function are due mainly to a higher capacity and efficiency of substrate oxidation, likely related to greater mitochondrial machinery in females than in males, which is in accord with greater mitochondrial differentiation in females.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00035.2005 | DOI Listing |
Curr Med Chem
January 2025
Laboratory of Angiopathology Institute of General Pathology and Pathophysiology, 8, Baltiiskaya Street, 125315, Moscow, Russia.
This review discusses the possibility of inheritance of some diseases through mutations in mitochondrial DNA. These are examples of many mitochondrial diseases that can be caused by mutations in mitochondrial DNA. Symptoms and severity can vary widely depending on the specific mutation and affected tissues.
View Article and Find Full Text PDFHypertension
January 2025
Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan. (Y. Zhao, T. Sakurai, A.K., M.T., Y.I.-S., H.K., Y.M., Y. Zhang, Q.G., P.L., K.H., M.H., J.L., T. Shindo).
Background: Adrenomedullin 2 (AM2) plays critical roles in regulating blood pressure and fluid balance. However, the specific involvement of AM2 in cardiac hypertrophy has not been comprehensively elucidated, warranting further investigation into its molecular mechanisms and therapeutic implications.
Methods: Cardiac hypertrophy was induced in adult mice lacking AM2 (AM2-/-) using transverse aortic constriction surgery.
Ann Transl Med
December 2024
[This corrects the article DOI: 10.21037/atm-22-222.].
View Article and Find Full Text PDFWorld J Diabetes
January 2025
National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20810, United States.
Diabetes mellitus (DM) is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe. DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death. Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles, programmed cell death, and circadian rhythm impairments.
View Article and Find Full Text PDFWorld J Diabetes
January 2025
Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan.
The recent study of Ding provides valuable insights into the functional implications of novel mitochondrial tRNA and tRNA variants in type 2 diabetes mellitus (T2DM). This editorial explores their findings, highlighting the role of mitochondrial dysfunction in the pathogenesis of T2DM. By examining the molecular mechanisms through which these tRNA variants contribute to disease progression, the study introduces new targets for therapeutic strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!