The cardiac-specific tetracycline-regulated gene expression system (tet-system) is a powerful tool using double-transgenic mice. The cardiac alpha-myosin heavy chain promoter (alphaMHC) drives lifetime expression of a tetracycline-inhibited transcription activator (tTA). Crossing alphaMHC-tTA mice with mice containing a tTA-responsive promoter linked to a target gene yields double-transgenic mice having tetracycline-repressed expression of the target gene in the heart. Using the tet-system, some studies use nontransgenic mice for the control group, whereas others use single-transgenic alphaMHC-tTA mice. However, previous studies found that high-level expression of a modified activator protein caused cardiomyopathy. Therefore, we tested whether cardiac expression of tTA was associated with altered function of alphaMHC-tTA mice compared with wild-type (WT) littermates. We monitored in vivo and in vitro function and gene expression profiles for myocardium from WT and alphaMHC-tTA mice. Compared with WT littermates, alphaMHC-tTA mice had a greater heart-to-body weight ratio (approximately 10%), ventricular dilation, and decreased ejection fraction, suggesting mild cardiomyopathy. In vitro, submaximal contractions were greater compared with WT and were associated with greater myofilament Ca2+ sensitivity. Gene expression profiling revealed that the expression of 153 genes was significantly changed by >20% when comparing alphaMHC-tTA with WT myocardium. These findings demonstrate that introduction of the alphaMHC-tTA construct causes significant effects on myocardial gene expression and major functional abnormalities in vivo and in vitro. For studies using the tet-system, these results suggest caution in the use of controls, since alphaMHC-tTA myocardium differs appreciably from WT. Furthermore, the results raise the possibility that the phenotype conferred by a target gene may be influenced by the modified genetic background of alphaMHC-tTA myocardium.

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiolgenomics.00016.2005DOI Listing

Publication Analysis

Top Keywords

gene expression
20
alphamhc-tta mice
20
target gene
12
alphamhc-tta myocardium
12
expression
10
mice
9
alphamhc-tta
9
gene
8
function gene
8
double-transgenic mice
8

Similar Publications

Background: The Microtubules-associated protein tau (MAPT), alpha-synuclein (SNCA), and leucine zipper tumor suppressor 3 (LZTS3) genes are implicated in neurodegeneration and tumor suppression, respectively. This study investigated the regulatory roles of eugenol on paraquat-altered genes.

Results: Forty male Wistar rats divided into five groups of eight rats were used.

View Article and Find Full Text PDF

Exome sequencing reveals a rare damaging variant in GRIN2C in familial late-onset Alzheimer's disease.

Alzheimers Res Ther

January 2025

Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant.

View Article and Find Full Text PDF

Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.

View Article and Find Full Text PDF

Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy.

Epigenetics Chromatin

January 2025

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.

Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).

View Article and Find Full Text PDF

Background: Advanced gastric cancer (GC) exhibits a high recurrence rate and a dismal prognosis. Myocyte enhancer factor 2c (MEF2C) was found to contribute to the development of various types of cancer. Therefore, our aim is to develop a prognostic model that predicts the prognosis of GC patients and initially explore the role of MEF2C in immunotherapy for GC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!