Sphingomyelinase (SMase) from Bacillus cereus has been known to be activated by Mg2+, Mn2+, and Co2+, but strongly inhibited by Zn2+. In the present study, we investigated the effects of several kinds of metal ions on the catalytic activity of B. cereus SMase, and found that the activity was inhibited by Zn2+ at its higher concentrations or at higher pH values, but unexpectedly activated at lower Zn2+ concentrations or at lower pH values. This result indicates that SMase possesses at least two different binding sites for Zn2+ and that the Zn2+ binding to the high-affinity site can activate the enzyme, whereas the Zn2+ binding to the low-affinity site can inactivate it. We also found that the binding of substrate to the enzyme was independent of the Zn2+ binding to the high-affinity site, but was competitively inhibited by the Zn2+ binding to the low-affinity site. The binding affinity of the metal ions to the site for activating the enzyme was determined to be in the rank-order of Mg2+ = Co2+ < Mn2+ < Zn2+. It was also demonstrated that these four metal ions competed with each other for the same binding site on the enzyme molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2005.02.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!