Functional specificity of artificial transcriptional activators.

Chem Biol

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.

Published: March 2005

Misregulated transcription is linked to many human diseases, and thus artificial transcriptional activators are highly desirable as mechanistic tools and as replacements for their malfunctioning natural counterparts. We previously reported two artificial transcriptional activation domains obtained from synthetic peptide libraries screened for binding to the yeast transcription protein Med15(Gal11). Here we demonstrate that the transcriptional potency of the Med15 ligands is increased through straightforward structural alterations. These artificial activation domains upregulate transcription via specific Med15 binding interactions and do not function in mammalian cells, which lack Med15. This functional specificity stands in contrast to most natural or artificial activation domains that function across all eukaryotic cell types. The results indicate that the screening strategy holds excellent promise for identifying peptide and small molecule transcriptional activators that function by unique mechanisms with advantageous specificity properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2005.01.014DOI Listing

Publication Analysis

Top Keywords

artificial transcriptional
12
transcriptional activators
12
activation domains
12
functional specificity
8
artificial activation
8
artificial
5
transcriptional
5
specificity artificial
4
activators misregulated
4
misregulated transcription
4

Similar Publications

This study focuses on the regulatory effects of genes encoding the juvenile hormone (JH) receptor methoprene-tolerant () and transcription factor krüppel homolog 1 () on the reproductive capacity of male adults. and expression levels were analyzed in males fed on artificial diets with and without JH by quantitative real-time PCR, and the effects of and on male reproduction were analyzed by RNA interference technology. transcription levels in 5- and 10-day-old males fed with a JH-supplemented diet were lower than those without JH.

View Article and Find Full Text PDF

Goldfish (), subjected to millennia of artificial selection and breeding, have diversified into numerous ornamental varieties, such as the celestial-eye (CE) goldfish, noted for its unique dorsal eye rotation. Previous studies have primarily focused on anatomical modifications in CE goldfish eyes, yet the molecular underpinnings of their distinctive eye orientation remain poorly understood. This study employed high-throughput transcriptome and proteome sequencing on 110-day-old full-sibling CE goldfish, which displayed either anterior or upward eye rotations.

View Article and Find Full Text PDF

Application of Spatial Transcriptomics in Digestive System Tumors.

Biomolecules

December 2024

Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China.

In the field of digestive system tumor research, spatial transcriptomics technologies are used to delve into the spatial structure and the spatial heterogeneity of tumors and to analyze the tumor microenvironment (TME) and the inter-cellular interactions within it by revealing gene expression in tumors. These technologies are also instrumental in the diagnosis, prognosis, and treatment of digestive system tumors. This review provides a concise introduction to spatial transcriptomics and summarizes recent advances, application prospects, and technical challenges of these technologies in digestive system tumor research.

View Article and Find Full Text PDF

The design of functional artificial cells involves compartmentalizing biochemical processes to mimic cellular organization. To emulate the complex chemical systems in biological cells, it is necessary to incorporate an increasing number of cellular functions into single compartments. Artificial organelles that spatially segregate reactions inside artificial cells will be beneficial in this context by rectifying biochemical pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!