Silencing the cardiac potassium channel Kv4.3 by RNA interference in a CHO expression system.

Biochem Biophys Res Commun

Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, University of Technology, Dresden, Germany.

Published: May 2005

RNA interference (RNAi) is a powerful technique for gene silencing, in which the downregulation of mRNA is triggered by short RNAs complementary to a target mRNA sequence, with consequent reduction of the encoded protein. The aim of this study was to test the effects of silencing the expression of the cardiac potassium channel Kv4.3 in a heterologous expression system, in order to investigate the effect of RNAi on channel properties. A Chinese hamster ovary cell line stably expressing Kv4.3 and the accessory beta-subunit KChIP2 was transfected with small-interfering RNAs (siRNAs) targeting Kv4.3. Effects of RNAi were monitored at the mRNA, protein, and functional levels. Real-time PCR and immunofluorescence staining revealed significant reduction of Kv4.3 mRNA and protein expression. These results were confirmed by functional patch-clamp measurements of the transient outward current (I(to)) which was reduced up to 80% by RNAi. We conclude that the use of siRNAs reagents for post-transcriptional gene silencing is a new effective method for the reduction of the expression and function of different ionic channels which may be adapted for studying their role also in native cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2005.03.018DOI Listing

Publication Analysis

Top Keywords

cardiac potassium
8
potassium channel
8
channel kv43
8
rna interference
8
expression system
8
gene silencing
8
mrna protein
8
kv43
5
expression
5
silencing
4

Similar Publications

Acute myocardial infarction (MI) remains a leading cause of mortality worldwide, with inflammatory and reparative phases playing critical roles in disease progression. Currently, there is a pressing need for imaging techniques to monitor immune cell infiltration and inflammation activity during these phases. We developed a novel probe, Tc-HYNIC-mAb, utilizing a monoclonal antibody that targets the voltage-gated potassium channel 1.

View Article and Find Full Text PDF

: Hyperkalemia is a common electrolyte disorder in patients with heart failure and reduced ejection fraction (HFrEF). Renin-angiotensin-aldosterone system inhibitors (RAASi) have been shown to improve survival and decrease hospitalization rates, although they may increase the serum potassium levels. Hyperkalemia has significant clinical and economic implications, and is associated with increased healthcare resource utilization.

View Article and Find Full Text PDF

The rapid delayed-rectifier potassium current: a biophysical basis for cardiac repolarization and arrhythmia.

Nat Rev Cardiol

January 2025

Cardiovascular Research Laboratories, School of Physiology, Pharmacology & Neuroscience, Faculty of Health & Life Sciences, University of Bristol, Bristol, UK.

View Article and Find Full Text PDF

Background: Andersen-Tawil syndrome (ATS) is a rare autosomal dominant disorder caused by variants in the gene. It is associated with periodic paralysis, dysmorphic features and cardiac arrhythmias. The syndrome exhibits incomplete penetrance, leading to a broad spectrum of clinical manifestations, making diagnosis challenging.

View Article and Find Full Text PDF

Objectives: The high incidence of coronary artery heart disease (CHD) poses a significant burden and challenge to public health systems globally. Effective prevention and early diagnosis of CHD have become key strategies to alleviate this burden. This study aims to explore the application of advanced machine learning techniques to enhance the accuracy of early screening and risk assessment for CHD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!