BACKGROUND: It is well described that diabetes mellitus is a hypercoagulable state. It is also known that patients with renal dysfunction have impaired platelet aggregation and function. It is not well described how renal dysfunction affects the hypercoagulability associated with diabetes. This post-hoc sub-group analysis compares platelet function, clot structure and thrombin generation time at baseline, and following enoxaparin exposure in three groups of subjects. METHODS: 30 total subjects were evaluated in the three groups: Group I: normal controls (n = 10), Group II: subjects with renal dysfunction but without diabetes (n = 13), and Group III: subjects with concomitant diabetes and renal dysfunction (n = 7). For each subject, platelet contractile force (PCF), clot elastic modulus (CEM) and thrombin generation time (TGT) were simultaneously measured in whole blood at baseline, and following increasing enoxaparin antifactor Xa activity exposure. The group means for each parameter were determined and compared using one-way analysis of variance, with post-hoc Tukey-Kramer test. RESULTS: At baseline, subjects in Group III (diabetics with concomitant renal dysfunction) display significantly enhanced platelet activity, as measured by PCF (p = 0.003) and CEM (p = 0.03), relative to the non-diabetic Groups I and II. Subjects in Group II (renal dysfunction without diabetes) had significantly prolonged TGT values relative to controls when the antifactor Xa activity concentration reached 0.5 (p = 0.007), 1.0 (p = 0.005) and 3.0 IU/mL (p < 0.0001), respectively. There were no differences between Group II and Group III with respect to TGT at these antifactor Xa activity concentrations. When the antifactor Xa activity concentration reached 3.0 IU/mL, Groups II and III formed significantly less rigid blood clots (CEM p = 0.003) and also trended toward reduced PCF (p = 0.06) relative to Group I. CONCLUSION: This hypothesis-generating sub-group analysis suggests that at baseline, patients with concomitant diabetes and renal dysfunction have significantly enhanced platelet activity (PCF), and form more rigid blood clots (CEM) compared to controls and subjects with renal dysfunction but no diabetes. This may suggest that the presence of renal dysfunction does not ameliorate the hypercoagulable state associated with diabetes. Secondly, it appears that subjects with renal dysfunction but without diabetes have an enhanced response to enoxaparin relative to controls.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1079955 | PMC |
http://dx.doi.org/10.1186/1477-9560-3-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!