Bacterial adhesion: considerations within a risk-based approach to cleaning validation.

PDA J Pharm Sci Technol

Sterility Assurance Leader, Eli Lilly & Co, Indianapolis, IN 46221, USA.

Published: April 2005

Pharmaceutical manufacturing processes are vulnerable to varying degrees of microbial challenge (hazard) quantifiable as microbial ingress, and microbial retention risks affecting raw materials and inputs to the final product. Control over these risks is exacted by both purposefully designed and incidental (or fortuitous) properties of the manufacturing processes. Within the manufacturing environment, equipment cleaning and hold processes are uniquely prone to microbial challenge yet paradoxically demonstrate the greatest potential for mitigation of these risks. Cognition of those components and contributing factors associated with microbial challenge are necessary to facilitate scientifically sound risk assessments. In the context of equipment cleaning and hold processes, risk assessments are necessary to identify and contrive conditions, which are truly worst case for the validation of the control of microbial challenge. A number of components contribute to the risk of microbial retention, yet the phenomenon of microbial adhesion to surfaces remains one of the most ubiquitous and perplexing. The dual purpose of this review is to primarily précis and provide in a single reference those multi-factorial features and variables contributing to bacterial adhesion, and secondly to provide a guide for interpretation of those considerations for integration into a risk-based approach to cleaning validation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

microbial challenge
16
bacterial adhesion
8
risk-based approach
8
approach cleaning
8
cleaning validation
8
manufacturing processes
8
microbial
8
microbial retention
8
equipment cleaning
8
cleaning hold
8

Similar Publications

Background: Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In this study, across three broiler production cycles, we compared the metagenomes and performance of broilers provided with ionophores (as the control group) against birds subjected to five different GHI combinations involving vaccination, probiotics, prebiotics, essential oils, and reduction of ionophore use.

View Article and Find Full Text PDF

Modeling and simulation of distribution and drug resistance of major pathogens in patients with respiratory system infections.

BMC Infect Dis

January 2025

Department of Respiratory Medicine, Anting Hospital of Jiading District, 1060 Hejing Road, Anting Town, Jiading District, Shanghai, 201805, China.

Background: Respiratory tract infections (RTIs) are one of the leading causes of morbidity and mortality worldwide. The increase in antimicrobial resistance in respiratory pathogens poses a major challenge to the effective management of these infections.

Objective: To investigate the distribution of major pathogens of RTIs and their antimicrobial resistance patterns in a tertiary care hospital and to develop a mathematical model to explore the relationship between pathogen distribution and antimicrobial resistance.

View Article and Find Full Text PDF

In the food industry, time-to-result is crucial for faster release of products, minimising recalls, mitigation of microbial contamination problems and, ultimately, food safety. Carrageenan is isolated from red seaweed (Rhodophyta) and applied in various foods and beverages as a gelling, thickening, texturing, or stabilizing agent due to its hygroscopic properties. Currently, the standard industry plate count method entails a one-hundred-fold dilution of the sample before mixing with molten agar for assessment of the level of microbial contamination in carrageenan samples prior to business-to-business shipment.

View Article and Find Full Text PDF

Effects of nisin loaded chitosan-pectin nanoparticles on shelf life and storage stability of room temperature stored processed cheese.

Food Chem

January 2025

Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, China. Electronic address:

Processed cheese faces challenges related to short shelf life and susceptibility to microbial contamination during room temperature storage. Nisin, a natural antimicrobial peptide used for food preservation, exhibits limited sustained activity and a narrow antimicrobial spectrum, making its enhancement essential. To address these issues, this study employed electrostatic self-assembly technology to develop chitosan-pectin nanoparticles loaded with nisin (CNP) to improve processed cheese stability at room temperature.

View Article and Find Full Text PDF

Biokinetic models can optimise pollutant degradation and enhance microbial growth processes, aiding to protect ecosystem protection. Traditional biokinetic approaches (such as Monod, Haldane, etc.) can be challenging, as they require detailed knowledge of the organism's metabolism and the ability to solve numerous kinetic differential equations based on the principles of micro, molecular biology and biochemistry (first engineering principles) which can lead to discrepancies between predicted and actual degradation rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!