Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Migration, proliferation, and matrix-degrading protease expression of smooth muscle cells (SMCs) are major features of intimal hyperplasia after vascular injury. Although MEK kinase 1 (MEKK1) has been shown to regulate cell migration and urokinase plasminogen activator (uPA) expression, the precise role of MEKK1 in this process remains unknown.
Methods And Results: We triggered a vascular remodeling model by complete ligation of the right common carotid artery in wild-type (WT) and MEKK1-null (MEKK1-/-) mice. The intimal areas 28 days after ligation were significantly decreased in the ligated MEKK1-/- arteries compared with WT arteries (28+/-8 versus 65+/-17 microm2, P<0.05). There were no differences in the ratios of proliferating cell nuclear antigen (PCNA)-positive cells to total cells within the arterial wall between WT and MEKK1-/- arteries. Proliferation capacity also did not differ between WT and MEKK1-/- cultured aortic smooth muscle cells (AoSMCs). In contrast, the number of intimal PCNA-positive cells 7 days after ligation was significantly smaller in MEKK1-/- arteries. Three different migration assays revealed that migration and invasion of MEKK1-/- AoSMCs were markedly impaired. Addition of full-length MEKK1 restored the migration capacity of MEKK1-/- AoSMCs. The number of MEKK1-/- AoSMCs showing lamellipodia formation by epithelial growth factor was significantly smaller compared with those of WT SMCs. Furthermore, uPA expression after ligation was markedly decreased in MEKK1-/- arteries.
Conclusions: MEKK1 is implicated in vascular remodeling after blood-flow cessation by regulating the migration and uPA expression of SMCs. MEKK1 is a potential target for drug development to prevent vascular remodeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.CIR.0000160350.20810.0F | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!