Human immunodeficiency virus type 1 (HIV-1) isolates vary in their ability to infect macrophages. Previous experiments have mapped viral determinants of macrophage infectivity to the V3 hypervariable region of the HIV-1 envelope glycoprotein. In our earlier studies, V1 and V2 sequences of HIV-1 were also shown to alter the ability of virus to spread in macrophage cultures, whereas no effect was seen in lymphocyte cultures. In the present study, determinants that allowed certain HIV-1 clones to infect and spread in macrophages were primarily mapped to the V2 region and were found to act by influencing early events of viral infection. By an assay of viral entry into macrophages, it was shown that viruses with the V2 region from the Ba-L strain of HIV-1 had >10-fold-higher entry efficiency than viruses with the V2 region derived from the NL4-3 strain. V1 region differences between these groups caused a twofold difference in entry. The known low expression of CD4 on macrophages appeared to be important in this process. In entry assays conducted with HeLa cell lines expressing various levels of CD4 and CCR5, low levels of CD4 influenced the efficiency of entry and fusion which were dependent on viral V1 and V2 envelope sequences. In contrast, no effect of V1 or V2 was seen in HeLa cells expressing high levels of CD4. Thus, the limited expression of CD4 on macrophages or other cell types could serve as a selective factor for V1 and V2 envelope sequences, and this selection could in turn influence many aspects of AIDS pathogenesis in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1069537 | PMC |
http://dx.doi.org/10.1128/JVI.79.8.4828-4837.2005 | DOI Listing |
Vet Res
January 2025
College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Iksan, 54596, Republic of Korea.
Fowl typhoid (FT) poses a significant threat to the poultry industry and can cause substantial economic losses, especially in developing regions. Caused by Salmonella Gallinarum (SG), vaccination can prevent FT. However, existing vaccines, like the SG9R strain, have limitations, including residual virulence and potential reversion of pathogenicity.
View Article and Find Full Text PDFAIDS Res Ther
January 2025
University of Khartoum, Khartoum, Sudan.
Background: Thyroid disorders have significant clinical sequelae, including impaired growth in children, metabolic abnormalities, and impaired cognitive function. However, available studies on burden of thyroid diseases in people with human immunodeficiency virus (HIV), particularly its prevalence and its interaction with HIV related factors (like CD4 count), are controversial. This review aimed to provide a comprehensive summary and analysis on the extent of thyroid dysfunctions in this population.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
Background: Cancer immunotherapy using immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, patients with multiple myeloma (MM) rarely respond to ICB. Accumulating evidence indicates that the complicated tumor microenvironment (TME) significantly impacts the efficacy of ICB therapy.
View Article and Find Full Text PDFNat Med
January 2025
BioNTech US, Cambridge, MA, USA.
New treatment approaches are warranted for patients with advanced melanoma refractory to immune checkpoint blockade (ICB) or BRAF-targeted therapy. We designed BNT221, a personalized, neoantigen-specific autologous T cell product derived from peripheral blood, and tested this in a 3 + 3 dose-finding study with two dose levels (DLs) in patients with locally advanced or metastatic melanoma, disease progression after ICB, measurable disease (Response Evaluation Criteria in Solid Tumors version 1.1) and, where appropriate, BRAF-targeted therapy.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
Background: Epilepsy has a genetic predisposition, yet causal factors and the dynamics of the immune environment in epilepsy are not fully understood.
Methods: We analyzed peripheral blood samples from epilepsy patients, identifying key genes associated with epilepsy risk through Mendelian randomization, using eQTLGen and genome-wide association studies. The peripheral immune environment's composition in epilepsy was explored using CIBERSORT.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!