Ischemia followed by reperfusion (I/R) in the presence of polymorphonuclear leukocytes (PMNs) results in marked cardiac contractile dysfunction. A cell-permeable PKC-zeta peptide inhibitor was used to test the hypothesis that PKC-zeta inhibition could attenuate PMN-induced cardiac contractile dysfunction by suppression of superoxide production from PMNs and increase nitric oxide (NO) release from vascular endothelium. The effects of the PKC-zeta peptide inhibitor were examined in isolated ischemic (20 min) and reperfused (45 min) rat hearts reperfused with PMNs. The PKC-zeta inhibitor (2.5 or 5 microM, n = 6) significantly attenuated PMN-induced cardiac dysfunction compared with I/R hearts (n = 6) receiving PMNs alone in left ventricular developed pressure (LVDP) and the maximal rate of LVDP (+dP/dt(max)) cardiac function indexes (P < 0.01), and these cardioprotective effects were blocked by the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (50 microM). Furthermore, the PKC-zeta inhibitor significantly increased endothelial NO release 47 +/- 2% (2.5 microM, P < 0.05) and 54 +/- 5% (5 microM, P < 0.01) over basal values from the rat aorta and significantly inhibited superoxide release from phorbol-12-myristate-13-acetate-stimulated rat PMNs by 33 +/- 12% (2.5 microM) and 40 +/- 8% (5 microM) (P < 0.01). The PKC-zeta inhibitor significantly attenuated PMN infiltration into the myocardium by 46-48 +/- 4% (P < 0.01) at 2.5 and 5 microM, respectively. In conclusion, these results suggest that the PKC-zeta peptide inhibitor attenuates PMN-induced post-I/R cardiac contractile dysfunction by increasing endothelial NO release and by inhibiting superoxide release from PMNs thereby attenuating PMN infiltration into I/R myocardium.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00883.2003DOI Listing

Publication Analysis

Top Keywords

cardiac contractile
12
contractile dysfunction
12
pkc-zeta peptide
12
peptide inhibitor
12
pkc-zeta inhibitor
12
+/- microm
12
cardioprotective effects
8
pmn-induced cardiac
8
endothelial release
8
microm 001
8

Similar Publications

Efficacy and safety of the activin signalling inhibitor, sotatercept, in a pooled analysis of PULSAR and STELLAR studies.

Eur Respir J

January 2025

Université Paris-Saclay, INSERM Unité Mixte de Recherche en Santé 999 (HPPIT), Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre (Assistance Publique-Hôpitaux de Paris), Le Kremlin-Bicêtre, France.

Introduction: Pulmonary arterial hypertension (PAH) is a progressive disease associated with significant morbidity and mortality. Sotatercept is a first-in-class activin signalling inhibitor that acts to restore the balance between the growth-promoting and growth-inhibiting signalling pathways.

Methods: This post-hoc, exploratory, pooled analysis combines data from the double-blind placebo periods of the phase 2 PULSAR (NCT03496207) and phase 3 STELLAR (NCT04576988) studies.

View Article and Find Full Text PDF

P2 purinergic receptors at the heart of pathological left ventricular remodeling following acute myocardial infarction.

Am J Physiol Heart Circ Physiol

January 2025

Université de Tours, Inserm UMR1327 ISCHEMIA Membrane Signalling and Inflammation in reperfusion injuries, Tours, France.

Pathological left ventricular remodeling is a complex process following an acute myocardial infarction, leading to architectural disorganization of the cardiac tissue. This phenomenon is characterized by sterile inflammation and the exaggerated development of fibrotic tissue, which is non-contractile and poorly conductive, responsible for organ dysfunction and heart failure. At present, specific therapies are lacking for both prevention and treatment of this condition, and no biomarkers are currently validated to identify at-risk patients.

View Article and Find Full Text PDF

Objective: To investigate the effects and mechanisms of miRNA 221 on myocardial ischemia/reperfusion injury (MIRI) in mice through the regulation of phospholamban (PLB) expression.

Methods: The MIRI mouse model was created and mice were divided into sham, MIRI, MIRI+ 221, and MIRI+ scr groups, with miRNA 221 overexpression induced in the myocardium of MIRI mice by targeted myocardial injection. Quantitative RT-PCR analysis was performed to observe the variation in miRNA 221, PLB, SERCA2, RYR2, NCX1, Cyt C and caspase 3 mRNA levels in myocardium, while Western blot assessed the levels of PLB, p-PLB (Ser16), p-PLB (Thr17), SERCA2, RYR2, NCX1, Cyt C and caspase 3 proteins.

View Article and Find Full Text PDF

Growth hormone-releasing hormone signaling and manifestations within the cardiovascular system.

Rev Endocr Metab Disord

January 2025

Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA.

Growth hormone (GH)-releasing hormone (GHRH), a hypothalamic peptide initially characterized for its role in GH regulation, has gained increasing attention due to its GH-independent action on peripheral physiology, including that of the cardiovascular system. While its effects on the peripheral vasculature are still under investigation, GHRH and synthetic agonists have exhibited remarkable receptor-mediated cardioprotective properties in preclinical models. GHRH and its analogs enhance myocardial function by improving contractility, reducing oxidative stress, inflammation, and offsetting pathological remodeling.

View Article and Find Full Text PDF

Inactivation of CaV1 and CaV2 channels.

J Gen Physiol

March 2025

Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.

Voltage-gated Ca2+ channels (VGCCs) are highly expressed throughout numerous biological systems and play critical roles in synaptic transmission, cardiac excitation, and muscle contraction. To perform these various functions, VGCCs are highly regulated. Inactivation comprises a critical mechanism controlling the entry of Ca2+ through these channels and constitutes an important means to regulate cellular excitability, shape action potentials, control intracellular Ca2+ levels, and contribute to long-term potentiation and depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!