The coordination and bonding of equatorial hydroxide, carbonyl, cyanide (CN-), and isocyanide (NC-) ligands with uranyl dication, [UO2]2+, has been studied using density functional theory with relativistic effective core potentials. Good agreement is seen between experimental and calculated geometries of [UO2(OH)4]2-. Newly predicted ground-state structures of [UO2(OH)5]3-, [UO2(CO)4]2+, [UO2(CO)5]2+, [UO2(CN)4]2-, [UO2(CN)5]3-, [UO2(NC)4]2-, and [UO2(NC)5]3- are reported. Four-coordinate uranyl isocyanide complexes are the predicted gas-phase species while five-coordinate uranyl cyanide complexes are energetically favorable in aqueous solution. Small energy differences between cyanide and isocyanide complexes indicate the energetic feasibility of mixed cyanide and isocyanide complexes. A D2d uranyl tetrahydroxide is the dominant gas-phase and aqueous species, but formation of uranyl carbonyl complexes is seen to be exothermic in the gas-phase and endothermic in aqueous solution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic048567uDOI Listing

Publication Analysis

Top Keywords

cyanide isocyanide
12
isocyanide complexes
12
five-coordinate uranyl
8
uranyl cyanide
8
aqueous solution
8
uranyl
6
complexes
6
cyanide
5
isocyanide
5
theoretical investigations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!