Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Derivatives of (nitro)cobalt picket fence porphyrin with oxygen-donating ligands have been prepared in solution and in the solid state. Crystal structures of two of these derivatives, (H2O)CoTpivPP(NO2) and (CH3OH)CoTpivPP(NO2), have been determined. The ethanol complex (C2H5OH)Co(TPP)(NO2) has been obtained and spectrally characterized using sublimed layers methodology. The formation constant and the DeltaH degrees value of the association reaction with ethanol have been determined by FTIR measurements in CCl4 solution. Catalytic oxygen activation and oxo-transfer reactions of these derivatives have been assessed in solution. Correlations between the oxo-transfer reactivity, thermodynamics, and characteristics of the nitro ligand show that although calculated and observed ONO vibrational spectra and bond lengths suggest activation of the NO2 ligand and enhanced oxo-transfer reactions as seen in the analogous five-coordinate complexes, density functional theory calculations support that thermodynamics limits oxo-atom transfer reactions in these six-coordinate systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic048701a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!